Rajasekaran Swaminathan
Intel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajasekaran Swaminathan.
IEEE Transactions on Magnetics | 2015
A. Hirohata; Hiroaki Sukegawa; Hideto Yanagihara; Igor Zutic; Takeshi Seki; Shigemi Mizukami; Rajasekaran Swaminathan
The Technical Committee of the IEEE Magnetics Society has selected seven research topics to develop their roadmaps, where major developments should be listed alongside expected timelines: 1) hard disk drives; 2) magnetic random access memories; 3) domain-wall devices; 4) permanent magnets; 5) sensors and actuators; 6) magnetic materials; and 7) organic devices. Among them, magnetic materials for spintronic devices have been surveyed as the first exercise. In this roadmap exercise, we have targeted magnetic tunnel and spin-valve junctions as spintronic devices. These can be used, for example, as a cell for a magnetic random access memory and a spin-torque oscillator in their vertical form as well as a spin transistor and a spin Hall device in their lateral form. In these devices, the critical role of magnetic materials is to inject spin-polarized electrons efficiently into a nonmagnet. We have accordingly identified two key properties to be achieved by developing new magnetic materials for future spintronic devices: 1) half-metallicity at room temperature (RT) and 2) perpendicular anisotropy in nanoscale devices at RT. For the first property, five major magnetic materials are selected for their evaluation for future magnetic/spintronic device applications: 1) Heusler alloys; 2) ferrites; 3) rutiles; 4) perovskites; and 5) dilute magnetic semiconductors. These alloys have been reported or predicted to be half-metallic ferromagnets at RT. They possess a bandgap at the Fermi level EF only for its minority spins, achieving 100% spin polarization at EF. We have also evaluated L10 alloys and D022-Mn alloys for the development of a perpendicularly anisotropic ferromagnet with large spin polarization. We have listed several key milestones for each material on their functionality improvements, property achievements, device implementations, and interdisciplinary applications within 35 years time scale. The individual analyses and the projections are discussed in the following sections.
Archive | 2010
Rajasekaran Swaminathan; Ravindranath Ravi Mahajan; John S. Guzek
Archive | 2010
Rajasekaran Swaminathan; Ravindranath V. Mahajan
Archive | 2009
Sanka Ganesan; Yosuke Kanaoka; Ram S. Viswanath; Rajasekaran Swaminathan; Robert Nickerson; Leonel R. Arane; John S. Guzek; Yoshihiro Tomita
Archive | 2008
Rajasekaran Swaminathan
Archive | 2009
Dingying Xu; Leonel R. Arana; Nachiket R. Raravikar; Mohit Mamodia; Rajasekaran Swaminathan; Rahul N. Manepalli
Archive | 2011
Rajasekaran Swaminathan
Archive | 2010
Rajasekaran Swaminathan; Ravindranath V. Mahajan
Archive | 2013
Aleksandar Aleksov; Rajasekaran Swaminathan; Ting Zhong
Archive | 2010
Aleksandar Aleksov; Rajasekaran Swaminathan; Nachiket R. Raravikar