Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajesh C. Rao is active.

Publication


Featured researches published by Rajesh C. Rao.


Nature Reviews Cancer | 2015

Hijacked in cancer: the KMT2 (MLL) family of methyltransferases

Rajesh C. Rao; Yali Dou

Histone–lysine N-methyltransferase 2 (KMT2) family proteins methylate lysine 4 on the histone H3 tail at important regulatory regions in the genome and thereby impart crucial functions through modulating chromatin structures and DNA accessibility. Although the human KMT2 family was initially named the mixed-lineage leukaemia (MLL) family, owing to the role of the first-found member KMT2A in this disease, recent exome-sequencing studies revealed KMT2 genes to be among the most frequently mutated genes in many types of human cancers. Efforts to integrate the molecular mechanisms of KMT2 with its roles in tumorigenesis have led to the development of first-generation inhibitors of KMT2 function, which could become novel cancer therapies.


Journal of Neurosurgery | 2014

Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient

Brian J. Dlouhy; Olatilewa Awe; Rajesh C. Rao; Patricia A. Kirby; Patrick W. Hitchon

Over the last decade, human cell transplantation and neural stem cell trials have examined the feasibility and safety of these potential therapies for treatment of a variety of neurological disorders. However, significant safety concerns have surrounded these trials due to the possibility of ectopic, uncontrolled cellular growth and tumor formation. The authors present the case of an 18-year-old woman who sustained a complete spinal cord injury at T10-11. Three years after injury, she remained paraplegic and underwent olfactory mucosal cell implantation at the site of injury. She developed back pain 8 years later, and imaging revealed an intramedullary spinal cord mass at the site of cell implantation, which required resection. Intraoperative findings revealed an expanded spinal cord with a multicystic mass containing large amounts of thick mucus-like material. Histological examination and immunohistochemical staining revealed that the mass was composed mostly of cysts lined by respiratory epithelium, submucosal glands with goblet cells, and intervening nerve twigs. This is the first report of a human spinal cord mass complicating spinal cord cell transplantation and neural stem cell therapy. Given the prolonged time to presentation, safety monitoring of all patients with cell transplantation and neural stem cell implantation should be maintained for many years.


International Journal of Radiation Oncology Biology Physics | 2014

Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy

Shahed N. Badiyan; Rajesh C. Rao; Anthony J. Apicelli; Sahaja Acharya; Vivek Verma; Adam A. Garsa; Todd DeWees; Christina K. Speirs; Jose Garcia-Ramirez; Jacqueline Esthappan; Perry W. Grigsby; J. William Harbour

PURPOSE To assess the impact on local tumor control of intraoperative ultrasonographic plaque visualization and selective application of transpupillary thermotherapy (TTT) in the treatment of posterior uveal melanoma with iodine-125 (I-125) episcleral plaque brachytherapy (EPB). METHODS AND MATERIALS Retrospective analysis of 526 patients treated with I-125 EPB for posterior uveal melanoma. Clinical features, dosimetric parameters, TTT treatments, and local tumor control outcomes were recorded. Statistical analysis was performed using Cox proportional hazards and Kaplan-Meier life table method. RESULTS The study included 270 men (51%) and 256 women (49%), with a median age of 63 years (mean, 62 years; range, 16-91 years). Median dose to the tumor apex was 94.4 Gy (mean, 97.8; range, 43.9-183.9) and to the tumor base was 257.9 Gy (mean, 275.6; range, 124.2-729.8). Plaque tilt >1 mm away from the sclera at plaque removal was detected in 142 cases (27%). Supplemental TTT was performed in 72 patients (13.7%). One or 2 TTT sessions were required in 71 TTT cases (98.6%). After a median follow-up of 45.9 months (mean, 53.4 months; range, 6-175 months), local tumor recurrence was detected in 19 patients (3.6%). Local tumor recurrence was associated with lower dose to the tumor base (P=.02). CONCLUSIONS Ultrasound-guided plaque localization of I-125 EPB is associated with excellent local tumor control. Detection of plaque tilt by ultrasonography at plaque removal allows supplemental TTT to be used in patients at potentially higher risk for local recurrence while sparing the majority of patients who are at low risk. Most patients require only 1 or 2 TTT sessions.


Cell Stem Cell | 2016

MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency

Hui Zhang; Srimonta Gayen; Jie Xiong; Bo Zhou; Avinash Kumar Shanmugam; Yuqing Sun; Hacer Karatas; Liu Liu; Rajesh C. Rao; Shaomeng Wang; Alexey I. Nesvizhskii; Sundeep Kalantry; Yali Dou

The interconversion between naive and primed pluripotent states is accompanied by drastic epigenetic rearrangements. However, it is unclear whether intrinsic epigenetic events can drive reprogramming to naive pluripotency or if distinct chromatin states are instead simply a reflection of discrete pluripotent states. Here, we show that blocking histone H3K4 methyltransferase MLL1 activity with the small-molecule inhibitor MM-401 reprograms mouse epiblast stem cells (EpiSCs) to naive pluripotency. This reversion is highly efficient and synchronized, with more than 50% of treated EpiSCs exhibiting features of naive embryonic stem cells (ESCs) within 3 days. Reverted ESCs reactivate the silenced X chromosome and contribute to embryos following blastocyst injection, generating germline-competent chimeras. Importantly, blocking MLL1 leads to global redistribution of H3K4me1 at enhancers and represses lineage determinant factors and EpiSC markers, which indirectly regulate ESC transcription circuitry. These findings show that discrete perturbation of H3K4 methylation is sufficient to drive reprogramming to naive pluripotency.


Retina-the Journal of Retinal and Vitreous Diseases | 2015

Acute ocriplasmin retinopathy.

Mark W. Johnson; Abigail T. Fahim; Rajesh C. Rao

Ocriplasmin, a recombinant truncated form of the enzyme plasmin, was approved by the Food and Drug Administration in October 2012 as a first-in-class drug for the nonsurgical treatment of vitreomacular traction (VMT).1 The potential advantages of pharmacologic vitreolysis over surgical vitrectomy include the induction of a “clean” and complete PVD without vitreoschisis, greater ease, lower cost, avoidance of surgical risk, and faster visual rehabilitation, possibly with better visual outcomes. Many retina specialists were hopeful that ocriplasmin was the long-awaited silver bullet—a safe and effective vitreolytic agent that would fulfill the promise of this new treatment approach. Real-life experience with the drug, however, has raised serious safety concerns.


Modern Pathology | 2016

Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: New routes to targeted therapies

Andi K. Cani; Moaaz Soliman; Daniel H. Hovelson; Chia Jen Liu; Andrew S. McDaniel; Michaela J. Haller; Jarred V. Bratley; Samantha Rahrig; Qiang Li; César A. Briceño; Scott A. Tomlins; Rajesh C. Rao

Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing (NGS) profiling of 38 formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically relevant genes. Potentially actionable mutations and copy number alterations were prioritized based on gain- and loss-of-function analyses, and catalogued, approved, and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0–5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically relevant hotspot gain-of-function mutations identified in 71% of diffuse large B-cell lymphomas and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (diffuse large B-cell and marginal zone lymphoma), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma), and NF1 (diffuse large B-cell lymphoma), and gain-of-function mutations in the oncogenes HRAS (follicular lymphoma) and NRAS (diffuse large B-cell lymphoma) were also observed. Together, our study demonstrates that NGS can be used to profile routine formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas for identification of somatic-driving alterations and nomination of potential therapeutic strategies.


Ophthalmology | 2016

Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery

Netan Choudhry; John Golding; Matthew W. Manry; Rajesh C. Rao

PURPOSE To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. DESIGN Observational study. PARTICIPANTS A total of 68 patients (68 eyes) with 19 peripheral retinal features. MAIN OUTCOME MEASURES Spectral-domain OCT-based structural features. METHODS Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. RESULTS Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision-threatening pathologies, such as lattice degeneration, meridional folds, retinal breaks, and rhegmatogenous retinal detachments. CONCLUSIONS Ultra-widefield steering-based SD OCT imaging of the retinal periphery is feasible with current commercially available devices and provides detailed anatomic information of the peripheral retina, including benign and pathologic entities, not previously imaged. This imaging technique may deepen our structural understanding of these entities and their potentially associated macular and systemic pathologies, and may influence decision-making in clinical practice, particularly in areas with teleretinal capabilities but poor access to retinal specialists.


Oncotarget | 2017

Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies

Andi K. Cani; Daniel H. Hovelson; Hakan Demirci; Mark W. Johnson; Scott A. Tomlins; Rajesh C. Rao

Background Vitreoretinal lymphoma (VRL), the most common lymphoma of the eye, is a rare form of primary CNS lymphoma (PCNSL). Most frequently a high-grade diffuse large B cell lymphoma, VRL can cause vision loss and its prognosis remains dismal: the overall survival time is 3 years after diagnosis. Radiotherapy and chemotherapy are used but remain frequently ineffective, and no standardized treatment regimen exists. Furthermore, no biologically targeted treatments, based on the genetic profile of the tumor, are available, as VRL has hitherto not comprehensively been profiled. To address these unmet needs, we hypothesized that a next generation sequencing (NGS)-based, National Cancer Institute (NCI) MATCH Trial-modified panel would be able to identify actionable genomic alterations from small-volume, intraocular liquid biopsies. Methods and Findings In this retrospective study, we collected diluted vitreous biopsies from 4 patients with a high suspicion for VRL. Following cytological confirmation of lymphoma (all were diffuse large B cell lymphomas), we subjected genomic DNA from the biopsies to NGS, using a panel containing 126 genes (3,435 amplicons across several hotspots per gene), which was modified from that of the NCI MATCH Trial, a new trial that has matched patients with cancers that have not responded (or never responded), to investigational therapeutics based on their prioritized mutation profile rather than site of tumor origin. Using a validated bioinformatics pipeline, we assessed for the presence of actionable mutations and copy number alterations. In all four small-volume, intraocular liquid biopsies, we obtained sufficient genomic DNA for analysis, even in diluted samples in which the undiluted vitreous was used for cytology and flow cytometry. Using NGS, we found targetable heterozygous gain-of-function mutations in the MYD88 oncogene, and confirmed in our cohort the presence the L265 mutations, previously described using PCR-based assays. For the first time in VRL, we also identified the MYD88 S243N mutation. We also identified two-copy copy number losses in the tumor suppressor CDKN2A in all four cases, and one copy loss of the tumor suppressor PTEN in one sample. In one case, in which vitreous biopsies were originally read as cytologically negative, but which was confirmed as lymphoma when a lesion appeared in the brain two years later, our NGS-based approach detected tumoral DNA in the banked, original liquid biopsy. Conclusions We performed the first systematic exploration of the actionable cancer genome in VRL. Our NGS-based approach identified exploitable genomic alterations such as gain-of-function MYD88 oncogene mutations and loss of the tumor suppressor CDKN2A, and thus illuminates new routes to biologically targeted therapies for VRL, a cancer with a dismal prognosis. This precision medicine strategy could be used to nominate novel, targeted therapies in lymphomas and other blinding and deadly ocular, orbital, and ocular adnexal diseases for which few treatments exist.


Scientific Reports | 2016

Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1.

Naihong Yan; Lin Cheng; Kin-Sang Cho; Muhammad Taimur A. Malik; Lirong Xiao; Chenying Guo; Honghua Yu; Ruilin Zhu; Rajesh C. Rao; Dong Feng Chen

Some adult-onset disorders may be linked to dysregulated embryonic development, yet the mechanisms underlying this association remain poorly understood. Congenital retinal degenerative diseases are blinding disorders characterized by postnatal degeneration of photoreceptors, and affect nearly 2 million individuals worldwide, but ∼50% do not have a known mutation, implicating contributions of epigenetic factors. We found that embryonic deletion of the histone methyltransferase (HMT) Ezh2 from all retinal progenitors resulted in progressive photoreceptor degeneration throughout postnatal life, via derepression of fetal expression of Six1 and its targets. Forced expression of Six1 in the postnatal retina was sufficient to induce photoreceptor degeneration. Ezh2, although enriched in the embryonic retina, was not present in the mature retina; these data reveal an Ezh2-mediated feed-forward pathway that is required for maintaining photoreceptor homeostasis in the adult and suggest novel targets for retinal degeneration therapy.


Investigative Ophthalmology & Visual Science | 2016

Safety and Feasibility of Quantitative Multiplexed Cytokine Analysis From Office-Based Vitreous Aspiration.

Devon H. Ghodasra; Ryan James Fante; Thomas W. Gardner; Michael Langue; Leslie M. Niziol; Cagri G. Besirli; Steven R. Cohen; Vaidehi S. Dedania; Hakan Demirci; Nieraj Jain; K. Thiran Jayasundera; Mark W. Johnson; Partho S. Kalyani; Rajesh C. Rao; David N. Zacks; Jeffrey M. Sundstrom

Purpose The goals of this study were to evaluate the safety of office-based vitreous sampling, and determine the utility of these samples with multiplex cytokine analysis. Methods Vitreous samples were collected from office-based needle aspiration and the rate of adverse events during follow-up was reviewed. The vitreous cytokine concentrations in a subset of patients with diabetic macular edema (DME) were analyzed using a 42 plex-cytokine bead array. These results were compared with vitreous cytokine concentrations in proliferative diabetic retinopathy (PDR) and controls (macular hole, epiretinal membrane, symptomatic vitreous floaters) from pars plana vitrectomy. Results An adequate volume of vitreous fluid (100–200 μL) was obtained in 52 (88%) of 59 office-based sampling attempts. The average length of follow-up was 300 days (range, 42–926 days). There were no complications, including cataract, retinal tear or detachment, and endophthalmitis. Two patients (3%) had posterior vitreous detachments within 3 months. Vitreous cytokine concentrations were measured in 44 patients: 14 controls, 13 with DME, and 17 with PDR. The concentration of ADAM11, CXCL-10, IL-8, and PDGF-A were higher in PDR compared with controls and DME. The concentration of IL-6 was higher in PDR compared with controls, but not compared with DME. Conclusions Office-based vitreous aspiration is safe and yields high-quality samples for multiplex vitreous cytokine analysis. Significant elevations of vitreous cytokines were found in PDR compared with DME and controls, including the novel finding of elevated ADAM11. As such, office-based aspiration is a safe and effective means to identify vitreous factors associated with vitreoretinal disease.

Collaboration


Dive into the Rajesh C. Rao's collaboration.

Top Co-Authors

Avatar

Brian J. Dlouhy

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yali Dou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge