Rajesh R. Singh
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajesh R. Singh.
Oncogene | 2008
Rajyalakshmi Luthra; Rajesh R. Singh; Madan G. Luthra; Yanan Li; Christina Hannah; Angela Romans; Bedia A. Barkoh; Su S. Chen; Joe Ensor; Dipen M. Maru; Russell Broaddus; Asif Rashid; Constance Albarracin
Suppression of annexin A1 (ANXA1), a mediator of apoptosis and inhibitor of cell proliferation, is well documented in various cancers but the underlying mechanism remains unknown. We investigated whether decreased ANXA1 expression was mediated by microRNAs (miRNAs), which are small, non-coding RNAs that negatively regulate gene expression. Using Sanger miRBase, we identified miR-584, miR-196a and miR-196b as potential miRNAs targeting ANXA1. Only miRNA-196a showed significant inverse correlation with ANXA1 mRNA levels in 12 cancer cell lines of esophageal, breast and endometrial origin (Pearsons correlation −0.66, P=0.019), identifying this as the candidate miRNA targeting ANXA1. Inverse correlation was also observed in 10 esophageal adenocarcinomas (Pearsons correlation −0.64, P=0.047). Analysis of paired normal/tumor tissues from additional 10 patients revealed an increase in miR-196a in the cancers (P=0.003), accompanied by a decrease in ANXA1 mRNA (P=0.004). Increasing miR-196a levels in cells by miR-196a mimics resulted in decreased ANXA1 mRNA and protein. In addition, miR-196a mimics inhibited luciferase expression in luciferase plasmid reporter that included predicted miR-196a recognition sequence from ANXA1 3′-untranslated region confirming that miR-196a directly targets ANXA1. miR-196a promoted cell proliferation, anchorage-independent growth and suppressed apoptosis, suggesting its oncogenic potential. This study demonstrated a novel mechanism of post-transcriptional regulation of ANXA1 expression and identified miR-196a as a marker of esophageal cancer.
Modern Pathology | 2014
Rashmi Kanagal-Shamanna; Bryce P. Portier; Rajesh R. Singh; Mark Routbort; Kenneth D. Aldape; Brian Handal; Hamed Rahimi; Neelima Reddy; Bedia A. Barkoh; Bal Mukund Mishra; Abhaya Paladugu; Jawad Manekia; Neda Kalhor; Sinchita Roy Chowdhuri; Gregg Staerkel; L. Jeffrey Medeiros; Rajyalakshmi Luthra; Keyur P. Patel
Increasing use of fine needle aspiration for oncological diagnosis, while minimally invasive, poses a challenge for molecular testing by traditional sequencing platforms due to high sample requirements. The advent of affordable benchtop next-generation sequencing platforms such as the semiconductor-based Ion Personal Genome Machine (PGM) Sequencer has facilitated multi-gene mutational profiling using only nanograms of DNA. We describe successful next-generation sequencing-based testing of fine needle aspiration cytological specimens in a clinical laboratory setting. We selected 61 tumor specimens, obtained by fine needle aspiration, with known mutational status for clinically relevant genes; of these, 31 specimens yielded sufficient DNA for next-generation sequencing testing. Ten nanograms of DNA from each sample was tested for mutations in the hotspot regions of 46 cancer-related genes using a 318-chip on Ion PGM Sequencer. All tested samples underwent successful targeted sequencing of 46 genes. We showed 100% concordance of results between next-generation sequencing and conventional test platforms for all previously known point mutations that included BRAF, EGFR, KRAS, MET, NRAS, PIK3CA, RET and TP53, deletions of EGFR and wild-type calls. Furthermore, next-generation sequencing detected variants in 19 of the 31 (61%) patient samples that were not detected by traditional platforms, thus increasing the utility of mutation analysis; these variants involved the APC, ATM, CDKN2A, CTNNB1, FGFR2, FLT3, KDR, KIT, KRAS, MLH1, NRAS, PIK3CA, SMAD4, STK11 and TP53 genes. The results of this study show that next-generation sequencing-based mutational profiling can be performed on fine needle aspiration cytological smears and cell blocks. Next-generation sequencing can be performed with only nanograms of DNA and has better sensitivity than traditional sequencing platforms. Use of next-generation sequencing also enhances the power of fine needle aspiration by providing gene mutation results that can direct personalized cancer therapy.
Oncogene | 2011
Rajesh R. Singh; Kranthi Kunkalla; Changju Qu; Ellen Schlette; Sattva S. Neelapu; Felipe Samaniego; Francisco Vega
Successful treatment of diffuse large B-cell lymphoma (DLBCL) is frequently hindered by the development of resistance to conventional chemotherapy resulting in disease relapse and high mortality. High expression of antiapoptotic and/or drug transporter proteins induced by oncogenic signaling pathways has been implicated in the development of chemoresistance in cancer. Previously, our studies showed that high expression of adenosine triphosphate-binding cassette drug transporter ABCG2 in DLBCL correlated inversely with disease- and failure-free survival. In this study, we have implicated activated hedgehog (Hh) signaling pathway as a key factor behind high ABCG2 expression in DLBCL through direct upregulation of ABCG2 gene transcription. We have identified a single binding site for GLI transcription factors in the ABCG2 promoter and established its functionality using luciferase reporter, site-directed mutagenesis and chromatin-immunoprecipitation assays. Furthermore, in DLBCL tumor samples, significantly high ABCG2 and GLI1 levels were found in DLBCL tumors with lymph node involvement in comparison with DLBCL tumor cells collected from pleural and/or peritoneal effusions. This suggests a role for the stromal microenvironment in maintaining high levels of ABCG2 and GLI1. Accordingly, in vitro co-culture of DLBCL cells with HS-5 stromal cells increased ABCG2 mRNA and protein levels by paracrine activation of Hh signaling. In addition to ABCG2, co-culture of DLBCL cells with HS-5 cells also resulted in increase expression of the antiapoptotic proteins BCL2, BCL-xL and BCL2A1 and in induced chemotolerance to doxorubicin and methotrexate, drugs routinely used for the treatment of DLBCL. Similarly, activation of Hh signaling in DLBCL cell lines with recombinant Shh N-terminal peptide resulted in increased expression of BCL2 and ABCG2 associated with increased chemotolerance. Finally, functional inhibition of ABCG2 drug efflux activity with fumitremorgin C or inhibition of Hh signaling with cyclopamine-KAAD abrogated the stroma-induced chemotolerance suggesting that targeting ABCG2 and Hh signaling may have therapeutic value in overcoming chemoresistance in DLBCL.
Cancer Research | 2009
Rajesh R. Singh; Jeong Hee Cho-Vega; Yogesh Davuluri; Ma Shuguang; Fatan Kasbidi; Cristiane Milito; Patrick A. Lennon; Elias Drakos; L. Jeffrey Medeiros; Rajyalakshmi Luthra; Francisco Vega
Deregulation of the sonic hedgehog (SHH) signaling pathway has been implicated in several cancers but has not been explored in T-cell lymphomas. Here, we report that the SHH/GLI1 signaling pathway is activated in anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL). We show that SHH, but not its transcriptional effector GLI1, is amplified in ALK+ ALCL tumors and cell lines, and that SHH and GLI1 proteins are highly expressed in ALK+ ALCL tumors and cell lines. We also show that inhibition of SHH/GLI1 signaling with cyclopamine-KAAD, as well as silencing GLI1 gene expression by small interfering (si)RNA, decreased cell viability and clonogenicity of ALK+ ALCL cells. Transfection of wild-type or mutant NPM-ALK into 293T cells showed that only wild-type NPM-ALK increased GLI1 protein levels and activated SHH/GLI1 signaling as shown by increase of CCND2 mRNA levels. Inhibition of ALK tyrosine kinase and phosphatidylinositol 3-kinase (PI3K)/AKT or forced expression of pAKT down-regulated or up-regulated SHH/GLI1 signaling, respectively. Inhibition of GSK3beta in 293T cells also increased protein levels of GLI1. In conclusion, the SHH/GLI1 signaling pathway is activated in ALK+ ALCL. SHH/GLI1 activation is the result of SHH gene amplification and is further mediated by NPM-ALK through activation of PI3K/AKT and stabilization of GLI1 protein. There is a positive synergistic effect between the SHH/GLI1 and PI3K/AKT pathways that contributes to the lymphomagenic effect of NPM-ALK.
Blood | 2015
Keyur P. Patel; Kate J. Newberry; Rajyalakshmi Luthra; Elias Jabbour; Sherry Pierce; Jorge Cortes; Rajesh R. Singh; Meenakshi Mehrotra; Mark Routbort; Madan G. Luthra; Taghi Manshouri; Fabio P S Santos; Hagop M. Kantarjian; Srdan Verstovsek
Although most patients with myelofibrosis (MF) derive benefit from ruxolitinib, some are refractory, have a suboptimal response, or quickly lose their response. To identify genes that may predict response to ruxolitinib, we performed targeted next-generation sequencing (NGS) of a panel of 28 genes recurrently mutated in hematologic malignancies in a cohort of patients with MF who were treated with ruxolitinib in a phase 1/2 study. We also tested for CALR deletions by standard polymerase chain reaction methods. Ninety-eight percent of patients had a mutation in ≥1 gene. Seventy-nine (82.1%) patients had the JAK2(V617F) mutation, 9 (9.5%) had CALR mutations (7 type 1, 2 type 2), 3 (3.1%) had MPL mutations, and 4 (4.2%) were negative for all 3. ASXL1/JAK2 and TET2/JAK2 were the most frequently comutated genes. Mutations in NRAS, KRAS, PTPN11, GATA2, TP53, and RUNX1 were found in <5% of patients. Spleen response (≥50% reduction in palpable spleen size) was inversely correlated with the number of mutations; patients with ≤2 mutations had ninefold higher odds of a spleen response than those with ≥3 mutations (odds ratio = 9.37; 95% confidence interval, 1.86-47.2). Patients with ≥3 mutations also had a shorter time to treatment discontinuation and shorter overall survival than those with fewer mutations. In multivariable analysis, only number of mutations and spleen response remained associated with time to treatment discontinuation. Patients with ≥3 mutations had the worst outcomes, suggesting that multigene profiling may be useful for therapeutic planning for MF.
Cancer Research | 2005
Rajesh R. Singh; Christopher J. Barnes; Amjad H. Talukder; Suzanne A. W. Fuqua; Rakesh Kumar
LIM domain only 4 (LMO4), a member of the LIM-only family of transcriptional coregulatory proteins, consists of two LIM protein-protein interaction domains that enable it to function as a linker protein in multiprotein complexes. Here, we have identified estrogen receptor alpha (ERalpha) and its corepressor, metastasis tumor antigen 1 (MTA1), as two novel binding partners of LMO4. Interestingly, LMO4 exhibited binding with both ERalpha and MTA1 and existed as a complex with ERalpha, MTA1, and histone deacetylases (HDAC), implying that LMO4 was a component of the MTA1 corepressor complex. Consistent with this notion, LMO4 overexpression repressed ERalpha transactivation functions in an HDAC-dependent manner. Accordingly, silencing of endogenous LMO4 expression resulted in a significant increased recruitment of ERalpha to target gene chromatin, stimulation of ERalpha transactivation activity, and enhanced expression of ERalpha-regulated genes. These findings suggested that LMO4 was an integral part of the molecular machinery involved in the negative regulation of ERalpha transactivation function in breast cells. Because LMO4 is up-regulated in human breast cancers, repression of ERalpha transactivation functions by LMO4 might contribute to the process of breast cancer progression by allowing the development of ERalpha-negative phenotypes, leading to increased aggressiveness of breast cancer cells.
Oncogene | 2008
Poonam R. Molli; Rajesh R. Singh; Sam W. Lee; Rakesh Kumar
Metastasis-associated tumor antigen 1 (MTA1), a component of the nucleosome remodeling and deacetylating (NuRD) complex is routinely upregulated in several cancers. In the present study, we investigated the potential role of MTA1 in BRCA1 transcriptional repression and subsequent chromosomal instability. MTA1–NuRD complex was found to negatively regulate BRCA1 transcription by physically associating with an atypical estrogen-responsive element (ERE) on the BRCA1 promoter. Moreover, MTA1 and HDAC complex recruited to the ERE of BRCA1 promoter in an ER α-dependent manner. Accordingly, BRCA1 protein levels were enhanced by silencing of either MTA1 expression or by treatment with the specific histone deacetylase inhibitor trichostatin A. MTA1s strong repressive effects on BRCA1 expression was supported by our observation that cells stably overexpressing MTA1 showed centrosome amplification which has been long implicated as a phenotype for BRCA1 repression. Accordingly, overexpression of BRCA1 in cells stably over expressing MTA1 resulted in restoration of normal centrosome numbers. Together, these findings strongly implicate MTA1 in the transcriptional repression of BRCA1 leading to abnormal centrosome number and chromosomal instability.
American Journal of Hematology | 2013
Khaled Alayed; Keyur P. Patel; Sergej Konoplev; Rajesh R. Singh; Mark Routbort; Neelima Reddy; Naveen Pemmaraju; Liping Zhang; Abdulaziz Al Shaikh; Tariq N. Aladily; Nitin Jain; Rajyalakshmi Luthra; L. Jeffrey Medeiros; Joseph D. Khoury
Distinguishing blastic plasmacytoid dendritic cell neoplasm (BPDCN) from acute myeloid leukemia (AML) is gaining increased importance because of emerging differences in therapeutic approaches, and this distinction can be problematic in bone marrow specimens. We identified retrospectively 16 patients with bone marrow involvement by BPDCN: 11 men and 5 women with a median age of 62.5 years (range, 19–86 years). Myelodysplastic changes were observed in five patients. Immunophenotypic analysis showed that the neoplastic cells were positive for CD4, CD123, TCL‐1, and HLA‐DR and were negative for CD3, CD8, CD13, CD19, CD34, and myeloperoxidase. Other antigens expressed by subsets of BPDCN cases included the following: CD56 (13/15; 81%), CD33 (7/10; 70%), CD7 (11/14; 69%), TdT (5/15; 33%), CD2 (5/11; 31%), CD117 (2/9; 22%), and CD5 (2/13; 15%). Conventional cytogenetic analysis showed chromosomal abnormalities in 6 of 13 (46%) cases analyzed, of which 3 cases had −13/13q−. Targeted next‐generation sequencing performed on five BPDCN cases identified TET2 (ten eleven translocation 2) mutations and no other AML‐associated mutations. In conclusion, BPDCN in the bone marrow has a characteristic immunoprofile (CD4+, CD56+, CD123+, and TCL‐1+) and appears to be commonly associated with myelodysplastic features and a high frequency of TET2 mutations in the absence of other mutations commonly observed in AML. Am. J. Hematol. 88:1055–1061, 2013.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Filippo Acconcia; Christopher J. Barnes; Rajesh R. Singh; Amjad H. Talukder; Rakesh Kumar
Integrin-linked kinase (ILK) is a phosphorylated protein that regulates physiological processes that overlap with those regulated by p21-activated kinase 1 (PAK1). Here we report the possible role of ILK phosphorylation by PAK1 in ILK-mediated signaling and intracellular translocation. We found that PAK1 phosphorylates ILK at threonine-173 and serine-246 in vitro and in vivo. Depletion of PAK1 decreased the levels of endogenous ILK phosphorylation in vivo. Mutation of PAK1 phosphorylation sites on ILK to alanine reduced cell motility and cell proliferation. Biochemical fractionation, confocal microscopy, and chromatin-interaction analyses of human cells revealed that ILK localizes predominantly in the cytoplasm but also resides in the nucleus. Transfection of MCF-7 cells with point mutants ILK-T173A, ILK-S246A, or ILK-T173A; S246A (ILK-DM) altered ILK localization. Selective depletion of PAK1 dramatically increased the nuclear and focal point accumulation of ILK, further demonstrating a role for PAK1 in ILK translocation. We also identified functional nuclear localization sequence and nuclear export sequence motifs in ILK, delineated an apparently integral role for ILK in maintaining normal nuclear integrity, and established that ILK interacts with the regulatory region of the CNKSR3 gene chromatin to negatively modulate its expression. Together, these results suggest that ILK is a PAK1 substrate, undergoes phosphorylation-dependent shuttling between the cell nucleus and cytoplasm, and interacts with gene-regulatory chromatin.
Journal of Cellular Biochemistry | 2005
Rajesh R. Singh; Rakesh Kumar
Excessive activation of the hormone signaling pathways is implicated in several disorders of the target tissues, with cancer being one of the most serious fallouts. Steroid hormone receptors are key proteins through which steroid hormones convey their signals to the cells. Deregulated activity of the hormone receptors due to their altered activation; stability or sub‐cellular localization is heavily implicated in the onset and progress of cancers. The role played by estrogen and its receptors in breast cancer remains the most thoroughly investigated steroid‐dependent cancer system till date. Choosing it as an example, we have summarized the molecular mechanisms underlying the action of the estrogen receptors (ERs) in manifesting the effects of the estrogens in the cells. A special emphasis is placed on the molecular mechanism of their functionality, role of the coactivator proteins, and the reasons for the deregulated signaling. The therapeutic approaches resulting from the mechanistic study of the ER action and their efficacies are also discussed. J. Cell. Biochem. 95: 490–505, 2005.