Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amjad H. Talukder is active.

Publication


Featured researches published by Amjad H. Talukder.


Nature | 2002

A naturally occurring MTA1 variant sequesters oestrogen receptor-α in the cytoplasm

Rakesh Kumar; Rui An Wang; Abhijit Mazumdar; Amjad H. Talukder; Mahitosh Mandal; Zhibo Yang; Rozita Bagheri-Yarmand; Aysegul A. Sahin; Gabriel N. Hortobagyi; Liana Adam; Christopher J. Barnes; Ratna K. Vadlamudi

Oestrogen receptor (ER) is a good prognostic marker for the treatment of breast cancers. Upregulation of metastatic tumour antigen 1 (MTA1) is associated with the invasiveness and metastatic potential of several human cancers and acts as a co-repressor of nuclear ER-α. Here we identify a naturally occurring short form of MTA1 (MTA1s) that contains a previously unknown sequence of 33 amino acids with an ER-binding motif, Leu-Arg-Ile-Leu-Leu (LRILL). MTA1s localizes in the cytoplasm, sequesters ER in the cytoplasm, and enhances non-genomic responses of ER. Deleting the LRILL motif in MTA1s abolishes its co-repressor function and its interaction with ER, and restores nuclear localization of ER. Dysregulation of human epidermal growth factor receptor-2 in breast cancer cells enhances the expression of MTA1s and the cytoplasmic sequestration of ER. Expression of MTA1s in breast cancer cells prevents ligand-induced nuclear translocation of ER and stimulates malignant phenotypes. MTA1s expression is increased in human breast tumours with no or low nuclear ER. The regulation of the cellular localization of ER by MTA1s represents a mechanism for redirecting nuclear receptor signalling by nuclear exclusion.


Cancer Research | 2006

P21-Activated Kinase 1 Regulation of Estrogen Receptor-α Activation Involves Serine 305 Activation Linked with Serine 118 Phosphorylation

Suresh K. Rayala; Amjad H. Talukder; Seetharaman Balasenthil; Robbin Tharakan; Christopher J. Barnes; Rui An Wang; Marcelo Aldaz; Sohaib A. Khan; Rakesh Kumar

Here, we investigated the role of P21-activated kinase 1 (Pak1) signaling in the function of estrogen receptor-alpha (ER-alpha) as assessed by serine 305 (S305) activation and transactivation activity of ER. We found that Pak1 overexpression interfered with the antiestrogenic action of tamoxifen upon the ER transactivation function in hormone-sensitive cells. In addition, tamoxifen stimulation led to up-regulation of ER target genes in breast cancer cells with increased Pak1 expression. Tamoxifen also increased Pak1-ER interaction in tamoxifen-resistant but not in tamoxifen-sensitive cells. Results from the mutational studies discovered a role of ER-S305 phosphorylation in triggering a subsequent phosphorylation of serine 118 (S118), and these effects were further potentiated by tamoxifen treatment. We found that S305 activation-linked ER transactivation function requires a functional S118, and active Pak1 signaling is required for a sustaining S118 phosphorylation of the endogenous ER. All of these events were positively influenced by tamoxifen and thus may contribute toward the loss of antiestrogenic effect of tamoxifen. These findings suggest that Pak1 signaling-dependent activation of ER-S305 leads to an enhanced S118 phosphorylation presumably due to a conformational change, and such structural modifications may participate in the development of tamoxifen resistance.


Development | 2004

Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis

Rozita Bagheri-Yarmand; Amjad H. Talukder; Rui An Wang; Ratna K. Vadlamudi; Rakesh Kumar

Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express β-casein, cyclin D1 andβ -catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1

Qingchang Meng; Suresh K. Rayala; Anupama E. Gururaj; Amjad H. Talukder; Bert W. O'Malley; Rakesh Kumar

Transcription, splicing, and translation are potentially coordinately regulatable in a temporospatial-dependent manner, although supporting experimental evidence for this notion is scarce. Yeast two-hybrid screening of a mammary gland cDNA library with human p21-activated kinase 1 (Pak1) as bait identified polyC-RNA-binding protein 1 (PCBP1), which controls translation from mRNAs containing the DICE (differentiation control element). Mitogenic stimulation of human cells phosphorylated PCBP1 on threonines 60 and 127 in a Pak1-sensitive manner. Pak1-dependent phosphorylation of PCBP1 released its binding and translational inhibition from a DICE-minigene. Overexpression of PCBP1 also inhibited the translation of the endogenous L1 cell adhesion molecule mRNA, which contains two DICE motifs in the 3′ untranslated region. We also found that Pak1 activation led to an increased nuclear retention of PCBP1, recruitment to the eukaryotic translation initiation factor 4E (eIF4E) promoter, and stimulation of eIF4E expression in a Pak1-sensitive manner. Moreover, mitogenic stimulation promoted Pak1- and PCBP1-dependent alternative splicing and exon inclusion from a CD44 minigene. The alternative splicing functions of PCBP1 were in turn mediated by its intrinsic interaction with Caper α, a U2 snRNP auxiliary factor-related protein previously implicated in RNA splicing. These findings establish the principle that a single coregulator can function as a signal-dependent and coordinated regulator of transcription, splicing, and translation.


Oncogene | 1999

Serine phosphorylation of paxillin by heregulin-β1: Role of p38 mitogen activated protein kinase

Ratna K. Vadlamudi; Liana Adam; Amjad H. Talukder; John Mendelsohn; Rakesh Kumar

The mechanisms through which heregulin (HRG) regulates the progression of breast cancer cells to a more invasive phenotype are currently unknown. Recently we have shown that HRG treatment of breast cancer cells leads to the formation of lamellipodia/filopodia, and increased cell migration and invasiveness through the phosphatidylinositol 3-kinase (PI-3 kinase). Since the process of cell migration must involve changes in adhesion, we explored the potential HRG regulation of paxillin, a major cytoskeletal phosphoprotein of focal adhesion. We report that HRG stimulation of non-invasive breast cancer cells resulted in stimulation of p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinases (ERK) and PI-3K, and a concurrent unexpected increase in the level of paxillin phosphorylation on serine residue which was sensitive to protein-phosphatase 2b but not to protein tyrosine phosphatase 1. In addition, HRG triggered a rapid redistribution of paxillin to the perinuclear regions from the tyrosine-phosphorylated focal adhesions, and increased cell scattering. There was no effect of HRG on the state of phosphorylation and localization of focal adhesion kinase. The HRG-induced increase in serine phosphorylation of paxillin and cell scattering were selectively inhibited by a specific inhibitor of p38MAPK or a dominant-negative p38MAPK mutant, but not by inhibitors of p42/44MAPK or PI-3 kinase pathways. For the first time our results have shown that HRG, a potent migratory growth factor stimulates serine phosphorylation of paxillin. These findings suggest a role of p38MAPK-dependent signal transduction pathway(s) in serine phosphorylation and disassembly of the paxillin from the focal complexes during HRG-induced cell shape alterations and motility.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Repression of Six3 by a corepressor regulates rhodopsin expression

Bramanandam Manavathi; Shaohua Peng; Suresh K. Rayala; Amjad H. Talukder; Minhua H. Wang; Rui An Wang; Seetharaman Balasenthil; Neeraj Agarwal; Laura J. Frishman; Rakesh Kumar

Here, we provide gain-of-function, loss-of function, and molecular evidence supporting genetic interactions between metastasis associated protein 1 (MTA1) and Six3 and between Six3 and rhodopsin. We discovered that MTA1 physically interacts with the Six3 chromatin in a histone deacetylase-dependent manner, leading to transcriptional suppression of the Six3 gene. MTA1 is also a Six3-interacting corepressor that contributes to a self-negative regulation of Six3 transcription by Six3. In contrast, deletion of the MTA1 alleles in murine embryonic fibroblasts or its knockdown in rat retinal ganglion cells stimulates Six3 expression. MTA1 inactivation in the MTA1-null mice results in an elevated Six3 level and proliferation of the retina cells with no obvious abnormities in eye formation. However, unexpectedly, we discovered an enhanced recruitment of Six3 to the rhodopsin chromatin in retina from the MTA1-null mice; Six3s homeodomain interacts with specific DNA elements in the rhodopsin promoter to stimulate its transcription, resulting in increased rhodopsin expression. Further, in holoprosencephaly patients, Six3 protein with a naturally occurring deletion mutation in the helix 3 of the homeodomain does not bind to rhodopsin DNA or stimulate rhodopsin transcription, implying a potential defective rhodopsin pathway in the affected holoprosencephaly patients. Further Six3 cooperates with Crx or NRL in stimulating transcription from the rhodopsin-luc. These findings reveal a previously unrecognized role for the MTA1 as an upstream modifier of Six3 and indicate that Six3 is a direct stimulator of rhodopsin expression, thus revealing a putative role for the MTA1/Six3/rhodopsin pathway in vertebrate eye.


Cancer Research | 2005

Negative Regulation of Estrogen Receptor α Transactivation Functions by LIM Domain Only 4 Protein

Rajesh R. Singh; Christopher J. Barnes; Amjad H. Talukder; Suzanne A. W. Fuqua; Rakesh Kumar

LIM domain only 4 (LMO4), a member of the LIM-only family of transcriptional coregulatory proteins, consists of two LIM protein-protein interaction domains that enable it to function as a linker protein in multiprotein complexes. Here, we have identified estrogen receptor alpha (ERalpha) and its corepressor, metastasis tumor antigen 1 (MTA1), as two novel binding partners of LMO4. Interestingly, LMO4 exhibited binding with both ERalpha and MTA1 and existed as a complex with ERalpha, MTA1, and histone deacetylases (HDAC), implying that LMO4 was a component of the MTA1 corepressor complex. Consistent with this notion, LMO4 overexpression repressed ERalpha transactivation functions in an HDAC-dependent manner. Accordingly, silencing of endogenous LMO4 expression resulted in a significant increased recruitment of ERalpha to target gene chromatin, stimulation of ERalpha transactivation activity, and enhanced expression of ERalpha-regulated genes. These findings suggested that LMO4 was an integral part of the molecular machinery involved in the negative regulation of ERalpha transactivation function in breast cells. Because LMO4 is up-regulated in human breast cancers, repression of ERalpha transactivation functions by LMO4 might contribute to the process of breast cancer progression by allowing the development of ERalpha-negative phenotypes, leading to increased aggressiveness of breast cancer cells.


Journal of Biological Chemistry | 2003

MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions.

Amjad H. Talukder; Sandip K. Mishra; Mahitosh Mandal; Seetharaman Balasenthil; Sonal Mehta; Aysegul A. Sahin; Christopher J. Barnes; Rakesh Kumar

The transcriptional activity of estrogen receptor-α is controlled by coregulators. MTA1 (metastasis-associated protein1) represses estrogen receptor-α-driven transcription by recruiting histone deacetylases (HDACs) to the estrogen response element containing target gene chromatin in breast cancer cells. Using a yeast two-hybrid screen with the MTA1 C-terminal domain as bait, we identified MAT1 (ménage á trois 1) as an MTA1-binding protein. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase (CAK), which has been shown to functionally interact with general transcriptional factor TFIIH, a known inducer of ER transactivation. We show that estrogen signaling promotes nuclear translocation of MAT1 and that MTA1 interacts with MAT1 both in vitro and in vivo. MAT1 binds to the C-terminal 389–441 amino acids GATA domain and N-terminal 1–164 amino acids bromo-domain of MTA1, whereas MTA1 binds to the N-terminal ring finger domain of the MAT1. In addition, MAT1 interacts with the activation function 2 domain of ER and colocalizes with ER in activated cells. MTA1 deregulation in breast cancer cells led to its interactions with the CAK complex components, ER, and HDAC2. Accordingly, MTA1 inhibited CAK stimulation of ER transactivation that was partially relieved by HDAC inhibitor trichostatin A, suggesting that MTA1 might inhibit CAK-induced transactivation function of ER by recruiting HDAC. Furthermore, MTA1 overexpression inhibited the ability of CAK complex to phosphorylate ER. Together, these findings identified MAT1 as a target of MTA1 and provided new evidence to suggest that the transactivation functions of ER might be influenced by the regulatory interactions between CAK and MTA1 in breast cancer cells.


Cancer Research | 2007

Identification of Pax5 as a Target of MTA1 in B-Cell Lymphomas

Seetharaman Balasenthil; Anupama E. Gururaj; Amjad H. Talukder; Rozita Bagheri-Yarmand; Ty Arrington; Brian J. Haas; John C. Braisted; Insun Kim; Norman H. Lee; Rakesh Kumar

Previously, we have shown that metastasis-associated protein 1 (MTA1) overexpression in transgenic mice was accompanied by high incidence of spontaneous B-cell lymphomas including diffuse large B-cell lymphomas (DLBCL). To understand the molecular basis of lymphoma in MTA1-transgenic (MTA1-TG) mice, we wished to identify a putative MTA1 target with a causal role in B-cell lymphogenesis. Using chromatin immunoprecipitation assays, we identified paired box gene 5 (Pax5), a molecule previously implicated in B-cell lymphogenesis, as a potential downstream effector of MTA1. Lymphomas from MTA1-TG mice also showed up-regulation of Pax5. We also found that MTA1 acetylated on Lys(626) interacted with p300 histone acetyltransferase, and that acetylated MTA1 was recruited to the Pax5 promoter to stimulate Pax5 transcription. Global gene profiling identified down-regulation of a set of genes, including those downstream of Pax5 and directly implicated in the B-cell lymphogenesis. Significance of these murine studies was established by evidence showing a widespread up-regulation of both MTA1 and Pax5 in DLBCL from humans. These observations provide in vivo genetic evidence for a role of MTA1 in lymphomagenesis.


Journal of Biological Chemistry | 2006

Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells.

Suresh K. Rayala; Petra den Hollander; Bramanandam Manavathi; Amjad H. Talukder; Chunying Song; Shaohua Peng; Angelika Barnekow; Joachim Kremerskothen; Rakesh Kumar

Recently dynein light chain 1 (DLC1), a cytoskeleton signaling component, has been shown to interact with and transactivate estrogen receptor-α (ER), leading to increased expression of ER target genes and growth stimulation of breast cancer cells. However, the molecular mechanism by which DLC1 regulates the ER pathway remains poorly understood. To gain insights into the putative mechanism, here we set out to identify novel DLC1-interacting proteins. We identified KIBRA, a WW domain- and a glutamic acid stretch-containing protein, as a DLC1-binding protein and showed that it interacts with DLC1 both in vitro and in vivo. We found that KIBRA-DLC1 complex is recruited to ER-responsive promoters. We also found that KIBRA-DLC1 interaction is mandatory for the recruitment and transactivation functions of ER or DLC1 to the target chromatin. Finally we found that KIBRA interacts with histone H3 via its glutamic acid-rich region and that such interaction might play a mechanistic role in conferring an optimal ER transactivation function as well as the proliferation of ligand-stimulated breast cancer cells. Together these findings indicate that DLC1-KIBRA interaction is essential for ER transactivation in breast cancer cells.

Collaboration


Dive into the Amjad H. Talukder's collaboration.

Top Co-Authors

Avatar

Rakesh Kumar

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Anupama E. Gururaj

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Seetharaman Balasenthil

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ratna K. Vadlamudi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Gregory Lizée

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rozita Bagheri-Yarmand

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Barnes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jason Roszik

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Patrick Hwu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Rajesh R. Singh

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge