Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajib Biswas is active.

Publication


Featured researches published by Rajib Biswas.


Journal of Chemical Physics | 2011

Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.

Biman Jana; Bharat V. Adkar; Rajib Biswas; Biman Bagchi

The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.


Journal of Physical Chemistry Letters | 2016

Differences in the Vibrational Dynamics of H2O and D2O: Observation of Symmetric and Antisymmetric Stretching Vibrations in Heavy Water

Luigi De Marco; William Carpenter; Hanchao Liu; Rajib Biswas; Joel M. Bowman; Andrei Tokmakoff

Waters ability to donate and accept hydrogen bonds leads to unique and complex collective dynamical phenomena associated with its hydrogen-bond network. It is appreciated that the vibrations governing liquid waters molecular dynamics are delocalized, with nuclear motion evolving coherently over the span of several molecules. Using two-dimensional infrared spectroscopy, we have found that the nuclear motions of heavy water, D2O, are qualitatively different than those of H2O. The nonlinear spectrum of liquid D2O reveals distinct O-D stretching resonances, in contrast to H2O. Furthermore, our data indicates that condensed-phase O-D vibrations have a different character than those in the gas phase, which we understand in terms of weakly delocalized symmetric and antisymmetric stretching vibrations. This difference in molecular dynamics reflects the shift in the balance between intra- and intermolecular couplings upon deuteration, an effect which can be understood in terms of the anharmonicity of the nuclear potential energy surface.


Journal of Chemical Physics | 2013

Layerwise decomposition of water dynamics in reverse micelles: A simulation study of two-dimensional infrared spectrum

Rajib Biswas; Jonathan Furtado; Biman Bagchi

We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to inhomogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool.


Journal of Chemical Physics | 2017

IR spectral assignments for the hydrated excess proton in liquid water

Rajib Biswas; William Carpenter; Joseph A. Fournier; Gregory A. Voth; Andrei Tokmakoff

The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm-1 for every local proton configuration, with the region 2000-2600 cm-1 being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H+⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H5O2+moiety.


Journal of Chemical Physics | 2010

A kinetic Ising model study of dynamical correlations in confined fluids: Emergence of both fast and slow time scales

Rajib Biswas; Biman Bagchi

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments.


Journal of Chemical Physics | 2016

Molecular modeling and assignment of IR spectra of the hydrated excess proton in isotopically dilute water

Rajib Biswas; William Carpenter; Gregory A. Voth; Andrei Tokmakoff

Infrared (IR) spectroscopy of the water O-H stretch has been widely used to probe both the local hydrogen-bonding structure and dynamics of aqueous systems. Although of significant interest, the IR spectroscopy of excess protons in water remains difficult to assign as a result of extensive and strong intermolecular interactions in hydrated proton complexes. As an alternate approach, we develop a mixed quantum-classical model for the vibrational spectroscopy of the excess proton in isotopically dilute water that draws on frozen proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multi-state empirical valence bond proton model (MS-EVB 3.2). A semi-empirical single oscillator spectroscopic map for the instantaneous transition frequency and transition dipole moment is constructed using potential energy surfaces for the O-H stretch coordinate of the excess proton using electronic structure calculations. Calculated spectra are compared with experimental spectra of dilute H+ in D2O obtained from double-difference FTIR to demonstrate the validity of the map. The model is also used to decompose IR spectra into contributions from different aqueous proton configurations. We find that the O-H transition frequency continuously decreases as the oxygen-oxygen length for a special pair proton decreases, shifting from Eigen- to Zundel-like configurations. The same shift is accompanied by a shift of the flanking water stretches of the Zundel complex to higher frequency than the hydronium O-H vibrations.


Journal of Physics: Condensed Matter | 2018

Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

Rajib Biswas; Biman Bagchi

In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.


Journal of Chemical Sciences | 2017

Role of solvation structure in the shuttling of the hydrated excess proton

Rajib Biswas; Gregory A. Voth

The classic Marcus electron transfer reaction model demonstrated that a barrierless electron transfer reaction can occur when both the reactant and product have almost similar solvation environment. In our recently developed proton model, we have incorporated the pre-solvation concept and showed that it indeed facilitates the proton diffusion in aqueous solution. In this work, we further quantify the degree of pre-solvation using different structural parameters, e.g., tetrahedral order parameter, average numbers of hydrogen bonds. All the above said parameters exhibit a very strong correlation with the proton share parameter. The more Zundel-like configurations have almost identical solvation environment for both the water molecules and support the pre-solvation concept. However, in the case of Eigen-like configurations, the central hydronium and “special pair” water have distinctly different solvation structures.Graphical AbstractSynopsis Hydrated excess proton transfer events in liquid water are highly coupled with local solvent orientations than previously thought. The weak hydrogen bond accepting nature of the hydronium helps to create water-like solvation environment around hydronium. This pre-solvated configuration facilitates the proton transfer process in liquid water. Proton sharing parameter-dependent radial distribution function shows the tiny intensity at 2.0 Å, which arises from the


Journal of Chemical Sciences | 2015

Use of polydispersity index as control parameter to study melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with Lindemann criterion, inherent structure analysis and Hansen-Verlet rule

Sarmistha Sarkar; Rajib Biswas; Partha Pratim Ray; Biman Bagchi


Journal of Chemical Physics | 2018

Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study

Sayantan Mondal; Subhajit Acharya; Rajib Biswas; Biman Bagchi; Richard N. Zare

4^{\mathrm{th}}

Collaboration


Dive into the Rajib Biswas's collaboration.

Top Co-Authors

Avatar

Biman Bagchi

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarmistha Sarkar

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biman Jana

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuhin Samanta

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Kazuhiko Seki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge