Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajkumar Savai is active.

Publication


Featured researches published by Rajkumar Savai.


Journal of Clinical Investigation | 2005

Reversal of experimental pulmonary hypertension by PDGF inhibition

Ralph T. Schermuly; Eva Dony; Hossein Ardeschir Ghofrani; Soni Savai Pullamsetti; Rajkumar Savai; Markus Roth; Akylbek Sydykov; Ying Ju Lai; Norbert Weissmann; Werner Seeger; Friedrich Grimminger

Progression of pulmonary hypertension is associated with increased proliferation and migration of pulmonary vascular smooth muscle cells. PDGF is a potent mitogen and involved in this process. We now report that the PDGF receptor antagonist STI571 (imatinib) reversed advanced pulmonary vascular disease in 2 animal models of pulmonary hypertension. In rats with monocrotaline-induced pulmonary hypertension, therapy with daily administration of STI571 was started 28 days after induction of the disease. A 2-week treatment resulted in 100% survival, compared with only 50% in sham-treated rats. The changes in RV pressure, measured continuously by telemetry, and right heart hypertrophy were reversed to near-normal levels. STI571 prevented phosphorylation of the PDGF receptor and suppressed activation of downstream signaling pathways. Similar results were obtained in chronically hypoxic mice, which were treated with STI571 after full establishment of pulmonary hypertension. Moreover, expression of the PDGF receptor was found to be significantly increased in lung tissue from pulmonary arterial hypertension patients compared with healthy donor lung tissue. We conclude that STI571 reverses vascular remodeling and cor pulmonale in severe experimental pulmonary hypertension regardless of the initiating stimulus. This regimen offers a unique novel approach for antire-modeling therapy in progressed pulmonary hypertension.


American Journal of Respiratory and Critical Care Medicine | 2012

Immune and Inflammatory Cell Involvement in the Pathology of Idiopathic Pulmonary Arterial Hypertension

Rajkumar Savai; Soni Savai Pullamsetti; Julia Kolbe; Ewa Bieniek; Robert Voswinckel; Ludger Fink; A. Scheed; Christin Ritter; Bhola K. Dahal; Axel Vater; Sven Klussmann; Hossein Ardeschir Ghofrani; Norbert Weissmann; Walter Klepetko; Gamal Andre Banat; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

RATIONALE Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of idiopathic PAH. OBJECTIVES To systematically evaluate the number and cross-sectional distribution of inflammatory cells in different sizes of pulmonary arteries from explanted lungs of patients with idiopathic PAH versus healthy donor lungs and to demonstrate functional relevance by blocking stromal-derived factor-1 by the Spiegelmer NOX-A12 in monocrotaline-induced pulmonary hypertension in rats. METHODS Immunohistochemistry was performed on lung tissue sections from patients with idiopathic PAH and healthy donors. All positively stained cells in whole-lung tissue sections, surrounding the vessels, and in the different compartments of the vessels were counted. To study the effects of blocking SDF-1, rats with monocrotaline-induced pulmonary hypertension were treated with NOX-A12 from Day 21 to Day 35 after monocrotaline administration. MEASUREMENTS AND MAIN RESULTS We found a significant increase of the perivascular number of macrophages (CD68(+)), macrophages/monocytes (CD14(+)), mast cells (toluidine blue(+)), dendritic cells (CD209(+)), T cells (CD3(+)), cytotoxic T cells (CD8(+)), and helper T cells (CD4(+)) in vessels of idiopathic PAH lungs compared with control subjects. FoxP3(+) mononuclear cells were significantly decreased. In the monocrotaline model, the NOX-A12-induced reduction of mast cells, CD68(+) macrophages, and CD3(+) T cells was associated with improvement of hemodynamics and pulmonary vascular remodeling. CONCLUSIONS Our findings reveal altered perivascular inflammatory cell infiltration in pulmonary vascular lesions of patients with idiopathic pulmonary arterial hypertension. Targeting attraction of inflammatory cells by blocking stromal-derived factor-1 may be a novel approach for treatment of PAH.


Circulation | 2008

Combined Tyrosine and Serine/Threonine Kinase Inhibition by Sorafenib Prevents Progression of Experimental Pulmonary Hypertension and Myocardial Remodeling

Martina Klein; Ralph T. Schermuly; Peter Ellinghaus; Hendrik Milting; Bernd Riedl; Sevdalina Nikolova; Soni Savai Pullamsetti; Norbert Weissmann; Eva Dony; Rajkumar Savai; Hossein Ardeschir Ghofrani; Friedrich Grimminger; Andreas Busch; Stefan Schäfer

Background— Inhibition of tyrosine kinases, including platelet-derived growth factor receptor, can reduce pulmonary arterial pressure in experimental and clinical pulmonary hypertension. We hypothesized that inhibition of the serine/threonine kinases Raf-1 (also termed c-Raf) and b-Raf in addition to inhibition of tyrosine kinases effectively controls pulmonary vascular and right heart remodeling in pulmonary hypertension. Methods and Results— We investigated the effects of the novel multikinase inhibitor sorafenib, which inhibits tyrosine kinases as well as serine/threonine kinases, in comparison to imatinib, a tyrosine kinase inhibitor, on hemodynamics, pulmonary and right ventricular (RV) remodeling, and downstream signaling in experimental pulmonary hypertension. Fourteen days after monocrotaline injection, male rats were treated orally for another 14 days with sorafenib (10 mg/kg per day), imatinib (50 mg/kg per day), or vehicle (n=12 to 16 per group). RV systolic pressure was decreased to 35.0±1.5 mm Hg by sorafenib and to 54.0±4.4 mm Hg by imatinib compared with placebo (82.9±6.0 mm Hg). In parallel, both sorafenib and imatinib reduced RV hypertrophy and pulmonary arterial muscularization. The effects of sorafenib on RV systolic pressure and RV mass were significantly greater than those of imatinib. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of the downstream ERK1/2 signaling pathway in RV myocardium and the lungs. In addition, sorafenib but not imatinib antagonized vasopressin-induced hypertrophy of the cardiomyoblast cell line H9c2. Conclusions— The multikinase inhibitor sorafenib prevents pulmonary remodeling and improves cardiac and pulmonary function in experimental pulmonary hypertension. Sorafenib exerts direct myocardial antihypertrophic effects, which appear to be mediated via inhibition of the Raf kinase pathway. The combined inhibition of tyrosine and serine/threonine kinases may provide an option to treat pulmonary arterial hypertension and associated right heart remodeling.


American Journal of Respiratory and Critical Care Medicine | 2012

Inhibition of MicroRNA-17 Improves Lung and Heart Function in Experimental Pulmonary Hypertension

Soni Savai Pullamsetti; Carmen Doebele; Ariane Fischer; Rajkumar Savai; Baktybek Kojonazarov; Bhola K. Dahal; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Angelika Bonauer; Werner Seeger; Andreas M. Zeiher; Stefanie Dimmeler; Ralph T. Schermuly

RATIONALE MicroRNAs (miRs) control various cellular processes in tissue homeostasis and disease by regulating gene expression on the posttranscriptional level. Recently, it was demonstrated that the expression of miR-21 and members of the miR-17-92 cluster was significantly altered in experimental pulmonary hypertension (PH). OBJECTIVES To evaluate the therapeutic efficacy and antiremodeling potential of miR inhibitors in the pathogenesis of PH. METHODS We first tested the effects of miR inhibitors (antagomirs), which were specifically designed to block miR-17 (A-17), miR-21 (A-21), and miR-92a (A-92a) in chronic hypoxia-induced PH in mice and A-17 in monocrotaline-induced PH in rats. Moreover, biological function of miR-17 was analyzed in cultured pulmonary artery smooth muscle cells. MEASUREMENTS AND MAIN RESULTS In the PH mouse model, A-17 and A-21 reduced right ventricular systolic pressure, and all antagomirs decreased pulmonary arterial muscularization. However, only A-17 reduced hypoxia-induced right ventricular hypertrophy and improved pulmonary artery acceleration time. In the monocrotaline-induced PH rat model, A-17 treatment significantly decreased right ventricular systolic pressure and total pulmonary vascular resistance index, increased pulmonary artery acceleration time, normalized cardiac output, and decreased pulmonary vascular remodeling. Among the tested miR-17 targets, the cyclin-dependent kinase inhibitor 1A (p21) was up-regulated in lungs undergoing A-17 treatment. Likewise, in human pulmonary artery smooth muscle cells, A-17 increased p21. Overexpression of miR-17 significantly reduced p21 expression and increased proliferation of smooth muscle cells. CONCLUSIONS Our data demonstrate that A-17 improves heart and lung function in experimental PH by interfering with lung vascular and right ventricular remodeling. The beneficial effects may be related to the up-regulation of p21. Thus, inhibition of miR-17 may represent a novel therapeutic concept to ameliorate disease state in PH.


Nature Medicine | 2014

Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension.

Rajkumar Savai; Hamza M. Al-Tamari; Daniel Sedding; Baktybek Kojonazarov; Christian Muecke; Rebecca Teske; Mario R. Capecchi; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly; Soni Savai Pullamsetti

Pulmonary hypertension (PH) is characterized by increased proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Forkhead box O (FoxO) transcription factors are key regulators of cellular proliferation. Here we show that in pulmonary vessels and PASMCs of human and experimental PH lungs, FoxO1 expression is downregulated and FoxO1 is inactivated via phosphorylation and nuclear exclusion. These findings could be reproduced using ex vivo exposure of PASMCs to growth factors and inflammatory cytokines. Pharmacological inhibition and genetic ablation of FoxO1 in smooth muscle cells reproduced PH features in vitro and in vivo. Either pharmacological reconstitution of FoxO1 activity using intravenous or inhaled paclitaxel, or reconstitution of the transcriptional activity of FoxO1 by gene therapy, restored the physiologically quiescent PASMC phenotype in vitro, linked to changes in cell cycle control and bone morphogenic protein receptor type 2 (BMPR2) signaling, and reversed vascular remodeling and right-heart hypertrophy in vivo. Thus, PASMC FoxO1 is a critical integrator of multiple signaling pathways driving PH, and reconstitution of FoxO1 activity offers a potential therapeutic option for PH.


Expert Opinion on Investigational Drugs | 2010

Targeting cancer with phosphodiesterase inhibitors

Rajkumar Savai; Soni Savai Pullamsetti; Gamal-Andre Banat; Norbert Weissmann; Hossein Ardeschir Ghofrani; Friedrich Grimminger; Ralph T. Schermuly

Importance of the field: For many cancers, there has been a shift from management with traditional, nonspecific cytotoxic chemotherapies to treatment with molecule-specific targeted therapies that are used either alone or in combination with traditional chemotherapy and radiation therapy. Accumulating data suggest that multi-targeted agents may produce greater benefits than those observed with single-targeted therapies, may have acceptable tolerability profiles, and may be active against a broader range of tumour types. Thus, regulation of cyclic nucleotide signalling is properly regarded as a composite of multiple component pathways involved in diverse aspects of tumour cell function. The impairment of cAMP and/or cGMP generation by overexpression of PDE isoforms that has been described in various cancer pathologies, and the effects of PDE inhibitors in tumour models in vitro and in vivo, may offer promising insight into future cancer treatments because of the numerous advantages of PDE inhibitors. Areas covered in this review: In this review, we focus on the expression and regulation of cyclic nucleotide phosphodiesterases (PDEs) in tumour progression and provide evidence that PDE inhibitors may be effective agents for treating cancer; the review covers literature from the past several years. What the reader will gain: PDEs have been studied in a variety of tumours; data have suggested that the levels of PDE activity are elevated and, therefore, the ratio of cGMP to cAMP is affected. In addition, PDE inhibitors may be potential targets for tumour cell growth inhibition and induction of apoptosis. This review explores the prospects of targeting PDEs with therapeutic agents for cancer, as well as the shortcomings of this approach such as dose-limiting side effects, toxicity/efficacy ratio and selectivity towards tumour tissue. In addition, it includes opinions and suggestion for developing PDE inhibition for cancer treatment from initial concept to potential therapeutic application and final relevance in clinical use. Take home message: Impaired cAMP and/or cGMP generation upon overexpression of PDE isoforms has been described in various cancer pathologies. Inhibition of selective PDE isoforms, which raises the levels of intracellular cAMP and/or cGMP, induces apoptosis and cell cycle arrest in a broad spectrum of tumour cells and regulates the tumour microenvironment. Therefore, the development and clinical application of inhibitors specific for individual PDE isoenzymes may selectively restore normal intracellular signalling, providing antitumour therapy with reduced adverse effects.


Journal of Immunology | 2014

Adventitial Fibroblasts Induce a Distinct Proinflammatory/Profibrotic Macrophage Phenotype in Pulmonary Hypertension

Karim C. El Kasmi; Steven C. Pugliese; Suzette R. Riddle; Jens M. Poth; Aimee L. Anderson; Maria G. Frid; Min Li; Soni Savai Pullamsetti; Rajkumar Savai; Maria A. Nagel; Mehdi A. Fini; Brian B. Graham; Rubin M. Tuder; Jacob E. Friedman; Holger K. Eltzschig; Ronald J. Sokol; Kurt R. Stenmark

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13–STAT6 and TLR–MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13–STAT6–mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6–activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Role of Src Tyrosine Kinases in Experimental Pulmonary Hypertension

Soni Savai Pullamsetti; Eva Berghausen; Swati Dabral; Aleksandra Tretyn; Elsa Butrous; Rajkumar Savai; Ghazwan Butrous; Bhola K. Dahal; Ralf P. Brandes; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Stephan Rosenkranz; Ralph T. Schermuly

Objective—Pulmonary arterial hypertension is a progressive pulmonary vascular disorder with high morbidity and mortality. Compelling evidence suggests that receptor tyrosine kinases, such as platelet-derived growth factor (PDGF) are closely involved in the pathogenesis of pulmonary arterial hypertension. We investigated the effects of 2 novel PDGF inhibitors, nilotinib/AMN107 (Abl kinases/PDGF receptor inhibitor) and dasatinib/BMS-354825 (Abl kinases/PDGF receptor/Src inhibitor), on the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and on the hemodynamics and pulmonary vascular remodeling in experimental pulmonary hypertension, and determined the expression and regulation of Src family kinases. Methods and Results—Human PASMCs were stimulated by PDGF alone or multiple growth factors to induce proliferation and migration in vitro. Dasatinib (0.03 &mgr;mol/L), nilotinib (0.3 &mgr;mol/L), and imatinib (1 &mgr;mol/L) potently inhibited PDGF-induced signal transducer and activator of transcription 3 and Akt phosphorylation. All 3 inhibitors decreased PDGF-induced proliferation, cell cycle gene regulation, and migration. In contrast, only dasatinib inhibited multiple growth factor–induced PASMC proliferation, and this was associated with the inhibition of Src phosphorylation. Combination of specific Src inhibitors (phosphoprotein phosphatase 1, phosphoprotein phosphatase 2) with either imatinib or nilotinib reduced multiple growth factor–induced proliferation to a similar extent as dasatinib. Importantly, Src phosphorylation increased in pulmonary arterial hypertension PASMCs compared with control PASMCs. Finally, in vivo dasatinib (15 mg/kg per body weight) treatment caused a complete reversal of pulmonary vascular remodeling and achieved similar effectiveness as imatinib (100 mg/kg per body weight) in both monocrotaline- and hypoxia-induced pulmonary hypertension models. Conclusion—We suggest that dual inhibition of PDGF receptor and Src kinases potently inhibits mitogenic and motogenic responses to growth factors in PASMCs and pulmonary vascular remodeling in vivo so that dual inhibition may represent an alternative therapeutic approach for pulmonary arterial hypertension.


The FASEB Journal | 2005

Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1α and an autocrine angiotensin system

Stefanie Krick; Jörg Hänze; Bastian Eul; Rajkumar Savai; Ulrike Seay; Friedrich Grimminger; Jiirgen Lohmeyer; Walter Klepetko; Werner Seeger; Frank Rose

Pulmonary artery adventitial fibroblasts (FBPA) may play a central role in lung vascular remodeling under conditions of hypoxia and inflammation, the result being pulmonary hypertension and cor pulmonale. In cultured human FBPA, both angiotensin II (Ang II) and hypoxia promoted cell cycle progression and cell proliferation and suppressed apoptosis. These effects were further enhanced when both stimuli were applied simultaneously. Hypoxia elevated the expression of hypoxia‐inducible factor 1α (HIF‐1α) and increased the expression of genes regulated by the hypoxia‐responsive element (HRE). Up‐regulation of both angiotensin‐converting enzyme (ACE) and Ang II receptor type 1 (AT1) was also observed. Exogenous Ang II further increased HIF/HRE‐dependent signaling in FBPA, whereas suppression of the autocrine ACE‐Ang II‐AT1 loop with inhibitors of ACE, AT1, and phosphatidylinositol 3‐kinase (PI3K) reduced the proliferative response to both hypoxia and exogenous Ang II. Overexpression of HIF‐1α by transient transfection caused the same proliferative effect and up‐regulation of AT1 expression that were observed under hypoxic conditions. In contrast, small interfering RNA targeting HIF‐1α inhibited hypoxia‐induced ACE and AT1 expression. Our studies indicate that the ACE‐Ang II‐AT1 system serves as a positive feedback loop and fosters FBPA proliferation under hypoxic conditions, with the PI3K‐HIF‐HRE axis as the central effector pathway. This pathway may thus facilitate vascular remodeling under hypoxic conditions.


Oncogene | 2013

Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF

Soni Savai Pullamsetti; Gamal-Andre Banat; Anja Schmall; Marten Szibor; D Pomagruk; Jörg Hänze; Ewa Kolosionek; Jochen Wilhelm; Thomas Braun; F. Grimminger; Werner Seeger; Ralph T. Schermuly; Rajkumar Savai

Lung cancer is the leading cause of cancer death worldwide. Recent data suggest that cyclic nucleotide phosphodiesterases (PDEs) are relevant in various cancer pathologies. Pathophysiological role of phosphodiesterase 4 (PDE4) with possible therapeutic prospects in lung cancer was investigated. We exposed 10 different lung cancer cell lines (adenocarcinoma, squamous and large cell carcinoma) to hypoxia and assessed expression and activity of PDE4 by real-time PCR, immunocytochemistry, western blotting and PDE activity assays. Expression and activity of distinct PDE4 isoforms (PDE4A and PDE4D) increased in response to hypoxia in eight of the studied cell lines. Furthermore, we analyzed various in silico predicted hypoxia-responsive elements (p-HREs) found in in PDE4A and PDE4D genes. Performing mutation analysis of the p-HRE in luciferase reporter constructs, we identified four functional HRE sites in the PDE4A gene and two functional HRE sites in the PDE4D gene that mediated hypoxic induction of the reporter. Silencing of hypoxia-inducible factor subunits (HIF1α and HIF2α) by small interfering RNA reduced hypoxic induction of PDE4A and PDE4D. Vice versa, using a PDE4 inhibitor (PDE4i) as a cyclic adenosine monophosphate (cAMP) -elevating agent, cAMP analogs or protein kinase A (PKA)-modulating drugs and an exchange protein directly activated by cAMP (EPAC) activator, we demonstrated that PDE4-cAMP-PKA/EPAC axis enhanced HIF signaling as measured by HRE reporter gene assay, HIF and HIF target genes expression ((lactate dehydrogenase A), LDHA, (pyruvate dehydrogenase kinase 1) PDK1 and (vascular endothelial growth factor A) VEGFA). Notably, inhibition of PDE4 by PDE4i or silencing of PDE4A and PDE4D reduced human lung tumor cell proliferation and colony formation. On the other hand, overexpression of PDE4A or PDE4D increased human lung cancer proliferation. Moreover, PDE4i treatment reduced hypoxia-induced VEGF secretion in human cells. In vivo, PDE4i inhibited tumor xenograft growth in nude mice by attenuating proliferation and angiogenesis. Our findings suggest that PDE4 is expressed in lung cancer, crosstalks with HIF signaling and promotes lung cancer progression. Thus, PDE4 may represent a therapeutic target for lung cancer therapy.

Collaboration


Dive into the Rajkumar Savai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge