Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soni Savai Pullamsetti is active.

Publication


Featured researches published by Soni Savai Pullamsetti.


Journal of Clinical Investigation | 2005

Reversal of experimental pulmonary hypertension by PDGF inhibition

Ralph T. Schermuly; Eva Dony; Hossein Ardeschir Ghofrani; Soni Savai Pullamsetti; Rajkumar Savai; Markus Roth; Akylbek Sydykov; Ying Ju Lai; Norbert Weissmann; Werner Seeger; Friedrich Grimminger

Progression of pulmonary hypertension is associated with increased proliferation and migration of pulmonary vascular smooth muscle cells. PDGF is a potent mitogen and involved in this process. We now report that the PDGF receptor antagonist STI571 (imatinib) reversed advanced pulmonary vascular disease in 2 animal models of pulmonary hypertension. In rats with monocrotaline-induced pulmonary hypertension, therapy with daily administration of STI571 was started 28 days after induction of the disease. A 2-week treatment resulted in 100% survival, compared with only 50% in sham-treated rats. The changes in RV pressure, measured continuously by telemetry, and right heart hypertrophy were reversed to near-normal levels. STI571 prevented phosphorylation of the PDGF receptor and suppressed activation of downstream signaling pathways. Similar results were obtained in chronically hypoxic mice, which were treated with STI571 after full establishment of pulmonary hypertension. Moreover, expression of the PDGF receptor was found to be significantly increased in lung tissue from pulmonary arterial hypertension patients compared with healthy donor lung tissue. We conclude that STI571 reverses vascular remodeling and cor pulmonale in severe experimental pulmonary hypertension regardless of the initiating stimulus. This regimen offers a unique novel approach for antire-modeling therapy in progressed pulmonary hypertension.


European Respiratory Journal | 2008

Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension

Ralph T. Schermuly; Stasch Jp; Soni Savai Pullamsetti; Middendorff R; Müller D; Schlüter Kd; Dingendorf A; Sascha Hackemack; Kolosionek E; Kaulen C; Rio Dumitrascu; Norbert Weissmann; Mittendorf J; Walter Klepetko; Werner Seeger; Hossein Ardeschir Ghofrani; F. Grimminger

Alterations of the nitric oxide receptor, soluble guanylate cyclase (sGC) may contribute to the pathophysiology of pulmonary arterial hypertension (PAH). In the present study, the expression of sGC in explanted lung tissue of PAH patients was studied and the effects of the sGC stimulator BAY 63-2521 on enzyme activity, and haemodynamics and vascular remodelling were investigated in two independent animal models of PAH. Strong upregulation of sGC in pulmonary arterial vessels in the idiopathic PAH lungs compared with healthy donor lungs was demonstrated by immunohistochemistry. Upregulation of sGC was detected, similarly to humans, in the structurally remodelled smooth muscle layer in chronic hypoxic mouse lungs and lungs from monocrotaline (MCT)-injected rats. BAY 63-2521 is a novel, orally available compound that directly stimulates sGC and sensitises it to its physiological stimulator, nitric oxide. Chronic treatment of hypoxic mice and MCT-injected rats, with fully established PAH, with BAY 63-2521 (10 mg·kg−1·day−1) partially reversed the PAH, the right heart hypertrophy and the structural remodelling of the lung vasculature. Upregulation of soluble guanylate cyclase in pulmonary arterial smooth muscle cells was noted in human idiopathic pulmonary arterial hypertension lungs and lungs from animal models of pulmonary arterial hypertension. Stimulation of soluble guanylate cyclase reversed right heart hypertrophy and structural lung vascular remodelling. Soluble guanylate cyclase may thus offer a new target for therapeutic intervention in pulmonary arterial hypertension.


The FASEB Journal | 2005

Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension

Soni Savai Pullamsetti; Ladislau Kiss; Hossein Ardeschir Ghofrani; Robert Voswinckel; Peter Haredza; Walter Klepetko; Clemens Aigner; Ludger Fink; Jai Prakash Muyal; Norbert Weissmann; Friedrich Grimminger; Werner Seeger; Ralph T. Schermuly

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS) and has been implicated in endothelial dysfunction. ADMA is metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH), with DDAH2 representing the predominant endothelial DDAH isoform. Symmetric dimethylarginine (SDMA), also originating from arginine methylation by protein arginine methyltransferases, is an inhibitor of intracellular arginine uptake. In both chronic pulmonary hypertensive rats and patients suffering from idiopathic pulmonary arterial hypertension (IPAH; NYHA class III and IV), a marked increase in plasma ADMA and SDMA levels, as well as tissue levels of asymmetric and symmetric dimethylated proteins, was observed. Moreover, when comparing lung tissue from pulmonary hypertensive rats and IPAH patients to corresponding normal lung tissue, expression of DDAH2 was found to be reduced at both the mRNA and the protein level with no significant changes in DDAH1 expression. These findings were further supported by demonstrating a decrease in DDAH2 function in the experimental pulmonary hypertension model. Immunohistochemistry in human and rat control tissue demonstrated both isoforms of DDAH in the endothelial layer and in the alveolar epithelium. In contrast, in pulmonary hypertensive tissue, the immunoreactivity of DDAH2 in pulmonary endothelium was significantly decreased compared with DDAH1. Therefore, altogether we can conclude that enhanced dimethylarginine levels may contribute to vascular abnormalities in pulmonary arterial hypertension. Suppression of endothelial DDAH2 expression and function represents an important underlying mechanism.


American Journal of Respiratory and Critical Care Medicine | 2012

Immune and Inflammatory Cell Involvement in the Pathology of Idiopathic Pulmonary Arterial Hypertension

Rajkumar Savai; Soni Savai Pullamsetti; Julia Kolbe; Ewa Bieniek; Robert Voswinckel; Ludger Fink; A. Scheed; Christin Ritter; Bhola K. Dahal; Axel Vater; Sven Klussmann; Hossein Ardeschir Ghofrani; Norbert Weissmann; Walter Klepetko; Gamal Andre Banat; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

RATIONALE Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of idiopathic PAH. OBJECTIVES To systematically evaluate the number and cross-sectional distribution of inflammatory cells in different sizes of pulmonary arteries from explanted lungs of patients with idiopathic PAH versus healthy donor lungs and to demonstrate functional relevance by blocking stromal-derived factor-1 by the Spiegelmer NOX-A12 in monocrotaline-induced pulmonary hypertension in rats. METHODS Immunohistochemistry was performed on lung tissue sections from patients with idiopathic PAH and healthy donors. All positively stained cells in whole-lung tissue sections, surrounding the vessels, and in the different compartments of the vessels were counted. To study the effects of blocking SDF-1, rats with monocrotaline-induced pulmonary hypertension were treated with NOX-A12 from Day 21 to Day 35 after monocrotaline administration. MEASUREMENTS AND MAIN RESULTS We found a significant increase of the perivascular number of macrophages (CD68(+)), macrophages/monocytes (CD14(+)), mast cells (toluidine blue(+)), dendritic cells (CD209(+)), T cells (CD3(+)), cytotoxic T cells (CD8(+)), and helper T cells (CD4(+)) in vessels of idiopathic PAH lungs compared with control subjects. FoxP3(+) mononuclear cells were significantly decreased. In the monocrotaline model, the NOX-A12-induced reduction of mast cells, CD68(+) macrophages, and CD3(+) T cells was associated with improvement of hemodynamics and pulmonary vascular remodeling. CONCLUSIONS Our findings reveal altered perivascular inflammatory cell infiltration in pulmonary vascular lesions of patients with idiopathic pulmonary arterial hypertension. Targeting attraction of inflammatory cells by blocking stromal-derived factor-1 may be a novel approach for treatment of PAH.


Circulation | 2008

Combined Tyrosine and Serine/Threonine Kinase Inhibition by Sorafenib Prevents Progression of Experimental Pulmonary Hypertension and Myocardial Remodeling

Martina Klein; Ralph T. Schermuly; Peter Ellinghaus; Hendrik Milting; Bernd Riedl; Sevdalina Nikolova; Soni Savai Pullamsetti; Norbert Weissmann; Eva Dony; Rajkumar Savai; Hossein Ardeschir Ghofrani; Friedrich Grimminger; Andreas Busch; Stefan Schäfer

Background— Inhibition of tyrosine kinases, including platelet-derived growth factor receptor, can reduce pulmonary arterial pressure in experimental and clinical pulmonary hypertension. We hypothesized that inhibition of the serine/threonine kinases Raf-1 (also termed c-Raf) and b-Raf in addition to inhibition of tyrosine kinases effectively controls pulmonary vascular and right heart remodeling in pulmonary hypertension. Methods and Results— We investigated the effects of the novel multikinase inhibitor sorafenib, which inhibits tyrosine kinases as well as serine/threonine kinases, in comparison to imatinib, a tyrosine kinase inhibitor, on hemodynamics, pulmonary and right ventricular (RV) remodeling, and downstream signaling in experimental pulmonary hypertension. Fourteen days after monocrotaline injection, male rats were treated orally for another 14 days with sorafenib (10 mg/kg per day), imatinib (50 mg/kg per day), or vehicle (n=12 to 16 per group). RV systolic pressure was decreased to 35.0±1.5 mm Hg by sorafenib and to 54.0±4.4 mm Hg by imatinib compared with placebo (82.9±6.0 mm Hg). In parallel, both sorafenib and imatinib reduced RV hypertrophy and pulmonary arterial muscularization. The effects of sorafenib on RV systolic pressure and RV mass were significantly greater than those of imatinib. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of the downstream ERK1/2 signaling pathway in RV myocardium and the lungs. In addition, sorafenib but not imatinib antagonized vasopressin-induced hypertrophy of the cardiomyoblast cell line H9c2. Conclusions— The multikinase inhibitor sorafenib prevents pulmonary remodeling and improves cardiac and pulmonary function in experimental pulmonary hypertension. Sorafenib exerts direct myocardial antihypertrophic effects, which appear to be mediated via inhibition of the Raf kinase pathway. The combined inhibition of tyrosine and serine/threonine kinases may provide an option to treat pulmonary arterial hypertension and associated right heart remodeling.


American Journal of Respiratory and Critical Care Medicine | 2012

Inhibition of MicroRNA-17 Improves Lung and Heart Function in Experimental Pulmonary Hypertension

Soni Savai Pullamsetti; Carmen Doebele; Ariane Fischer; Rajkumar Savai; Baktybek Kojonazarov; Bhola K. Dahal; Hossein Ardeschir Ghofrani; Norbert Weissmann; Friedrich Grimminger; Angelika Bonauer; Werner Seeger; Andreas M. Zeiher; Stefanie Dimmeler; Ralph T. Schermuly

RATIONALE MicroRNAs (miRs) control various cellular processes in tissue homeostasis and disease by regulating gene expression on the posttranscriptional level. Recently, it was demonstrated that the expression of miR-21 and members of the miR-17-92 cluster was significantly altered in experimental pulmonary hypertension (PH). OBJECTIVES To evaluate the therapeutic efficacy and antiremodeling potential of miR inhibitors in the pathogenesis of PH. METHODS We first tested the effects of miR inhibitors (antagomirs), which were specifically designed to block miR-17 (A-17), miR-21 (A-21), and miR-92a (A-92a) in chronic hypoxia-induced PH in mice and A-17 in monocrotaline-induced PH in rats. Moreover, biological function of miR-17 was analyzed in cultured pulmonary artery smooth muscle cells. MEASUREMENTS AND MAIN RESULTS In the PH mouse model, A-17 and A-21 reduced right ventricular systolic pressure, and all antagomirs decreased pulmonary arterial muscularization. However, only A-17 reduced hypoxia-induced right ventricular hypertrophy and improved pulmonary artery acceleration time. In the monocrotaline-induced PH rat model, A-17 treatment significantly decreased right ventricular systolic pressure and total pulmonary vascular resistance index, increased pulmonary artery acceleration time, normalized cardiac output, and decreased pulmonary vascular remodeling. Among the tested miR-17 targets, the cyclin-dependent kinase inhibitor 1A (p21) was up-regulated in lungs undergoing A-17 treatment. Likewise, in human pulmonary artery smooth muscle cells, A-17 increased p21. Overexpression of miR-17 significantly reduced p21 expression and increased proliferation of smooth muscle cells. CONCLUSIONS Our data demonstrate that A-17 improves heart and lung function in experimental PH by interfering with lung vascular and right ventricular remodeling. The beneficial effects may be related to the up-regulation of p21. Thus, inhibition of miR-17 may represent a novel therapeutic concept to ameliorate disease state in PH.


Circulation | 2007

Phosphodiesterase 1 Upregulation in Pulmonary Arterial Hypertension Target for Reverse-Remodeling Therapy

Ralph T. Schermuly; Soni Savai Pullamsetti; Grazyna Kwapiszewska; Rio Dumitrascu; Xia Tian; Norbert Weissmann; Hossein Ardeschir Ghofrani; Christina Kaulen; Torsten Dunkern; Christian Schudt; Robert Voswinckel; Jiang Zhou; Arun Samidurai; Walter Klepetko; Renate Paddenberg; Wolfgang Kummer; Werner Seeger; Friedrich Grimminger

Background— Pulmonary arterial hypertension (PAH) is a life-threatening disease, characterized by vascular smooth muscle cell hyperproliferation. The calcium/calmodulin-dependent phosphodiesterase 1 (PDE1) may play a major role in vascular smooth muscle cell proliferation. Methods and Results— We investigated the expression of PDE1 in explanted lungs from idiopathic PAH patients and animal models of PAH and undertook therapeutic intervention studies in the animal models. Strong upregulation of PDE1C in pulmonary arterial vessels in the idiopathic PAH lungs compared with healthy donor lungs was noted on the mRNA level by laser-assisted vessel microdissection and on the protein level by immunohistochemistry. In chronically hypoxic mouse lungs and lungs from monocrotaline-injected rats, PDE1A upregulation was detected in the structurally remodeled arterial muscular layer. Long-term infusion of the PDE1 inhibitor 8-methoxymethyl 3-isobutyl-1-methylxanthine in hypoxic mice and monocrotaline-injected rats with fully established pulmonary hypertension reversed the pulmonary artery pressure elevation, structural remodeling of the lung vasculature (nonmuscularized versus partially muscularized versus fully muscularized small pulmonary arteries), and right heart hypertrophy. Conclusions— Strong upregulation of the PDE1 family in pulmonary artery smooth muscle cells is noted in human idiopathic PAH lungs and lungs from animal models of PAH. Inhibition of PDE1 reverses structural lung vascular remodeling and right heart hypertrophy in 2 animal models. The PDE1 family may thus offer a new target for therapeutic intervention in pulmonary hypertension.


Circulation Research | 2004

Antiremodeling Effects of Iloprost and the Dual-Selective Phosphodiesterase 3/4 Inhibitor Tolafentrine in Chronic Experimental Pulmonary Hypertension

Ralph T. Schermuly; Klaus Peter Kreisselmeier; Hossein Ardeschir Ghofrani; Arun Samidurai; Soni Savai Pullamsetti; Norbert Weissmann; Christian Schudt; Leander Ermert; Werner Seeger; Friedrich Grimminger

Abstract— Severe pulmonary hypertension is a disabling disease with high mortality. We investigated acute and chronic effects of iloprost, a long-acting prostacyclin analogue, and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in monocrotaline-induced pulmonary hypertension in rats. Twenty-eight and 42 days after administration of the alkaloid, right ventricular systolic pressure increased from 25.8±2.0 to 62.9±3.4 and 70.5±7.4 mm Hg, with concomitant decline in cardiac index, central venous oxygen saturation, and arterial oxygenation. Marked right heart hypertrophy was demonstrated by the strongly elevated ratio of right ventricle/left ventricle plus septum weight, and massive thickening of the precapillary artery smooth muscle layer was shown histologically. Western blot analysis demonstrated increased levels of matrix metalloproteinases (MMPs) -2 and -9 and increased gelatinolytic activities in isolated pulmonary arteries. In these animals, both intravenous iloprost and tolafentrine displayed characteristic features of pulmonary vasodilators. When chronically infused from days 14 to 28, both agents significantly attenuated all monocrotaline-induced hemodynamic and gas exchange abnormalities as well as right heart hypertrophy. Full normalization of all variables including right ventricle size was achieved on combined administration of both agents during this period. This was also true for MMP-2 and MMP-9 expression and activity. Moreover, when iloprost plus tolafentrine was used for late therapeutic intervention, with infusion from days 28 to 42 after full establishment of severe pulmonary hypertension and cor pulmonale, hemodynamic, gas exchange, and cardiac and pulmonary vascular remodeling changes were significantly reversed. We conclude that the combined administration of iloprost and a dual-selective phosphodiesterase 3/4 inhibitor prevents and reverses the development of pulmonary hypertension and cor pulmonale in response to monocrotaline in rats. This regimen may therefore offer a possible antiremodeling therapy in severe pulmonary hypertension.


The FASEB Journal | 2007

Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension

Hemal H. Patel; Shen Zhang; Fiona Murray; Ryan Y. S. Suda; Brian P. Head; Utako Yokoyama; James S. Swaney; Ingrid R. Niesman; Ralph T. Schermuly; Soni Savai Pullamsetti; Patricia A. Thistlethwaite; Atsushi Miyanohara; Marilyn G. Farquhar; Jason X.-J. Yuan; Paul A. Insel

Vasoconstriction and vascular medial hypertrophy, resulting from increased intracellular [Ca2+] in pulmonary artery smooth muscle cells (PASMC), contribute to elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Caveolae, microdomains within the plasma membrane, contain the protein caveolin, which binds certain signaling molecules. We tested the hy‐pothesis that PASMC from IPAH patients express more caveolin‐1 (Cav‐1) and caveolae, which contribute to increased capacitative Ca2+ entry (CCE) and DNA synthesis. Immunohistochemistry showed increased expression of Cav‐1 in smooth muscle cells but not endothelial cells of pulmonary arteries from patients with IPAH. Subcellular fractionation and electron microscopy confirmed the increase in Cav‐1 and caveolae expression in IPAH‐PASMC. Treatment of IPAH‐PASMC with agents that deplete membrane cholesterol (methyl‐β‐cyclodextrin or lovastatin) disrupted caveo‐lae, attenuated CCE, and inhibited DNA synthesis of IPAH‐PASMC. Increasing Cav‐1 expression of normal PASMC with a Cav‐1‐encoding adenovirus increased caveolae formation, CCE, and DNA synthesis;treatment of IPAH‐PASMC with siRNA targeted to Cav‐1 produced the opposite effects. Treatments that down‐regulate caveolin/caveolae expression, including cho‐lesterol‐lowering drugs, reversed the increased CCE and DNA synthesis in IPAH‐PASMC. Increased caveolin and caveolae expression thus contribute to IPAH‐PASMC pathophysiology. The close relationship between caveolin/caveolae expression and altered cell physiology in IPAH contrast with previous results obtained in various animal models, including caveolin‐knockout mice, thus emphasizing unique features of the human disease. The results imply that disruption of caveolae in PASMC may provide a novel therapeutic approach to attenuate disease manifestations of IPAH.—Patel H. H., Zhang, S., Murray, F., Suda, R. Y. S., Head, B. P., Yokoyama, U., Swaney, J. S., Niesman, I. R., Schermuly, R. T., Savai Pullamsetti, S., Thistlethwaite, P. A., Miyanohara, A., Farquhar M. G., Yuan J. X.‐J., Insel P. A. Increased smooth muscle cell expression of caveolin‐1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J. 21, 2970–2979 (2007)


American Journal of Respiratory and Critical Care Medicine | 2010

Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension

Bhola K. Dahal; Teodora Cornitescu; Aleksandra Tretyn; Soni Savai Pullamsetti; Djuro Kosanovic; Rio Dumitrascu; Hossein Ardeschir Ghofrani; Norbert Weissmann; Robert Voswinckel; Gamal-Andre Banat; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

RATIONALE Epidermal growth factor (EGF) and its receptors play a role in cell proliferation and survival and are implicated in the pathobiology of pulmonary arterial hypertension (PAH). OBJECTIVES To study the role of EGF inhibition on experimental pulmonary hypertension. METHODS We investigated (1) the effects of three clinically approved EGF receptor (EGFR) antagonists in vitro on rat pulmonary arterial smooth muscle cell proliferation and in vivo on experimental pulmonary hypertension (PH) induced by monocrotaline injection in rats and by chronic hypoxia in mice, and (2) the expression of EGFR in the lung tissues from experimental and clinical PH. MEASUREMENTS AND MAIN RESULTS The EGFR inhibitors gefitinib, erlotinib, and lapatinib inhibited the EGF-induced proliferation of pulmonary arterial smooth muscle cells. In rats with established PH, gefitinib and erlotinib significantly reduced right ventricular systolic pressure and right ventricular hypertrophy. In addition, the medial wall thickness and muscularization of pulmonary arteries were improved. In contrast, lapatinib did not provide therapeutic benefit. These EGFR antagonists at their highest tolerable dose did not yield significant improvement in right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling in mice with chronic hypoxic PH. Moreover, no significant alteration in the EGFR expression was detected in the lung tissues from patients with idiopathic PAH. CONCLUSIONS The partial therapeutic efficacy of the EGFR antagonists in animal models of pulmonary hypertension and the absence of significant alteration in EGFR expression in the lungs from patients with idiopathic PAH suggest that EGFRs do not represent a promising target for the treatment of pulmonary hypertension.

Collaboration


Dive into the Soni Savai Pullamsetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge