Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pearlly S. Yan is active.

Publication


Featured researches published by Pearlly S. Yan.


Cancer Research | 2008

Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors

Shu Zhang; Curt Balch; Michael W.Y. Chan; Hung Cheng Lai; Daniela Matei; Jeanne M. Schilder; Pearlly S. Yan; Tim H M Huang; Kenneth P. Nephew

The objective of this study was to identify and characterize a self-renewing subpopulation of human ovarian tumor cells (ovarian cancer-initiating cells, OCICs) fully capable of serial propagation of their original tumor phenotype in animals. Ovarian serous adenocarcinomas were disaggregated and subjected to growth conditions selective for self-renewing, nonadherent spheroids previously shown to derive from tissue stem cells. To affirm the existence of OCICs, xenoengraftment of as few as 100 dissociated spheroid cells allowed full recapitulation of the original tumor (grade 2/grade 3 serous adenocarcinoma), whereas >10(5) unselected cells remained nontumorigenic. Stemness properties of OCICs (under stem cell-selective conditions) were further established by cell proliferation assays and reverse transcription-PCR, demonstrating enhanced chemoresistance to the ovarian cancer chemotherapeutics cisplatin or paclitaxel and up-regulation of stem cell markers (Bmi-1, stem cell factor, Notch-1, Nanog, nestin, ABCG2, and Oct-4) compared with parental tumor cells or OCICs under differentiating conditions. To identify an OCIC cell surface phenotype, spheroid immunostaining showed significant up-regulation of the hyaluronate receptor CD44 and stem cell factor receptor CD117 (c-kit), a tyrosine kinase oncoprotein. Similar to sphere-forming OCICs, injection of only 100 CD44(+)CD117(+) cells could also serially propagate their original tumors, whereas 10(5) CD44(-)CD117(-) cells remained nontumorigenic. Based on these findings, we assert that epithelial ovarian cancers derive from a subpopulation of CD44(+)CD117(+) cells, thus representing a possible therapeutic target for this devastating disease.


PLOS ONE | 2007

LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability

Marcos R. Estecio; Vazganush Gharibyan; Lanlan Shen; Ashraf Ibrahim; Ketan Doshi; Rong He; Jaroslav Jelinek; Allen S. Yang; Pearlly S. Yan; Tim H M Huang; Eloiza Helena Tajara; Jean-Pierre Issa

Background Alterations in DNA methylation in cancer include global hypomethylation and gene-specific hypermethylation. It is not clear whether these two epigenetic errors are mechanistically linked or occur independently. This study was performed to determine the relationship between DNA hypomethylation, hypermethylation and microsatellite instability in cancer. Methodology/Principal Findings We examined 61 cancer cell lines and 60 colorectal carcinomas and their adjacent tissues using LINE-1 bisulfite-PCR as a surrogate for global demethylation. Colorectal carcinomas with sporadic microsatellite instability (MSI), most of which are due to a CpG island methylation phenotype (CIMP) and associated MLH1 promoter methylation, showed in average no difference in LINE-1 methylation between normal adjacent and cancer tissues. Interestingly, some tumor samples in this group showed increase in LINE-1 methylation. In contrast, MSI-showed a significant decrease in LINE-1 methylation between normal adjacent and cancer tissues (P<0.001). Microarray analysis of repetitive element methylation confirmed this observation and showed a high degree of variability in hypomethylation between samples. Additionally, unsupervised hierarchical clustering identified a group of highly hypomethylated tumors, composed mostly of tumors without microsatellite instability. We extended LINE-1 analysis to cancer cell lines from different tissues and found that 50/61 were hypomethylated compared to peripheral blood lymphocytes and normal colon mucosa. Interestingly, these cancer cell lines also exhibited a large variation in demethylation, which was tissue-specific and thus unlikely to be resultant from a stochastic process. Conclusion/Significance Global hypomethylation is partially reversed in cancers with microsatellite instability and also shows high variability in cancer, which may reflect alternative progression pathways in cancer.


Cancer Research | 2006

Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant.

Meiyun Fan; Pearlly S. Yan; Cori Hartman-Frey; Lei Chen; Henry Paik; Samuel L. Oyer; Jonathan D. Salisbury; Alfred S.L. Cheng; Lang Li; Phillip H. Abbosh; Tim H M Huang; Kenneth P. Nephew

The development of targeted therapies for antiestrogen-resistant breast cancer requires a detailed understanding of its molecular characteristics. To further elucidate the molecular events underlying acquired resistance to the antiestrogens tamoxifen and fulvestrant, we established drug-resistant sublines from a single colony of hormone-dependent breast cancer MCF7 cells. These model systems allowed us to examine the cellular and molecular changes induced by antiestrogens in the context of a uniform clonal background. Global changes in both basal and estrogen-induced gene expression profiles were determined in hormone-sensitive and hormonal-resistant sublines using Affymetrix Human Genome U133 Plus 2.0 Arrays. Changes in DNA methylation were assessed by differential methylation hybridization, a high-throughput promoter CpG island microarray analysis. By comparative studies, we found distinct gene expression and promoter DNA methylation profiles associated with acquired resistance to fulvestrant versus tamoxifen. Fulvestrant resistance was characterized by pronounced up-regulation of multiple growth-stimulatory pathways, resulting in estrogen receptor alpha (ERalpha)-independent, autocrine-regulated proliferation. Conversely, acquired resistance to tamoxifen correlated with maintenance of the ERalpha-positive phenotype, although receptor-mediated gene regulation was altered. Activation of growth-promoting genes, due to promoter hypomethylation, was more frequently observed in antiestrogen-resistant cells compared with gene inactivation by promoter hypermethylation, revealing an unexpected insight into the molecular changes associated with endocrine resistance. In summary, this study provides an in-depth understanding of the molecular changes specific to acquired resistance to clinically important antiestrogens. Such knowledge of resistance-associated mechanisms could allow for identification of therapy targets and strategies for resensitization to these well-established antihormonal agents.


Cancer Research | 2004

Loss of Estrogen Receptor Signaling Triggers Epigenetic Silencing of Downstream Targets in Breast Cancer

Yu-Wei Leu; Pearlly S. Yan; Meiyun Fan; Victor X. Jin; Edward M. Curran; Wade V. Welshons; Susan H. Wei; Ramana V. Davuluri; Christoph Plass; Kenneth P. Nephew; Tim H M Huang

Alterations in histones, chromatin-related proteins, and DNA methylation contribute to transcriptional silencing in cancer, but the sequence of these molecular events is not well understood. Here we demonstrate that on disruption of estrogen receptor (ER) α signaling by small interfering RNA, polycomb repressors and histone deacetylases are recruited to initiate stable repression of the progesterone receptor (PR) gene, a known ERα target, in breast cancer cells. The event is accompanied by acquired DNA methylation of the PR promoter, leaving a stable mark that can be inherited by cancer cell progeny. Reestablishing ERα signaling alone was not sufficient to reactivate the PR gene; reactivation of the PR gene also requires DNA demethylation. Methylation microarray analysis further showed that progressive DNA methylation occurs in multiple ERα targets in breast cancer genomes. The results imply, for the first time, the significance of epigenetic regulation on ERα target genes, providing new direction for research in this classical signaling pathway.


Clinical Cancer Research | 2006

Mapping Geographic Zones of Cancer Risk with Epigenetic Biomarkers in Normal Breast Tissue

Pearlly S. Yan; Chinnambally Venkataramu; Ashraf Ibrahim; Rulong Z. Shen; Nils M. Diaz; Barbara A. Centeno; Frank Weber; Yu-Wei Leu; Charles L. Shapiro; Charis Eng; Timothy J. Yeatman; Tim H M Huang

Purpose: Genetic alterations were previously identified in normal epithelia adjacent to invasive cancers. The aim of this study was to determine DNA methylation in histologically normal tissues from multiple geographic zones adjacent to primary breast tumors. Experimental Design: First, methylation status of a 4-kb region of RASSF1A promoter was interrogated using oligonucleotide-based microarray in 144 samples (primary tumors, 47; adjacent normals, 69; reduction mammoplasty tissues, 28). Second, allelic imbalance (AI)/loss of heterozygosity (LOH) surrounding RASSF1A promoter were analyzed in 30 samples (tumors, 8; adjacent normals, 22). Third, global methylation screening of 49 samples (tumors, 12; adjacent normals, 25; reduction mammoplasty, 12) was done by differential methylation hybridization. Real-time quantitative methylation-specific PCR was used to validate the microarray findings. Results: DNA methylation in the core RASSF1A promoter was low in reduction mammoplasty tissues (P = 0.0001) when compared with primary tumors. The adjacent normals had an intermediate level of methylation. The regions surrounding the core were highly methylated in all sample types. Microsatellite markers showed AI/LOH in tumors and some of the adjacent normals. Concurrent AI/LOH and DNA methylation in RASSF1A promoter occurred in two of six tumors. Global methylation screening uncovered genes more methylated in adjacent normals than in reduction mammoplasty tissues. The methylation status of four genes was confirmed by quantitative methylation-specific PCR. Conclusions: Our findings suggest a field of methylation changes extending as far as 4 cm from primary tumors. These frequent alterations may explain why normal tissues are at risk for local recurrence and are useful in disease prognostication.


Current Biology | 2003

Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression.

Daniel Y.L. Mao; John D. Watson; Pearlly S. Yan; Dalia Barsyte-Lovejoy; Fereshteh Khosravi; W. Wei-Lynn Wong; Peggy J. Farnham; Tim Hui Ming Huang; Linda Z. Penn

The c-myc proto-oncogene encodes a transcription factor, c-Myc, which is deregulated and/or overexpressed in many human cancers. Despite c-Mycs importance, the identity of Myc-regulated genes and the mechanism by which Myc regulates these genes remain unclear. By combining chromatin immunoprecipitation with CpG island arrays, we identified 177 human genomic loci that are bound by Myc in vivo. Analyzing a cohort of known and novel Myc target genes showed that Myc-associated protein X, Max, also bound to these regulatory regions. Indeed, Max is bound to these loci in the presence or absence of Myc. The Myc:Max interaction is essential for Myc-dependent transcriptional activation; however, we show that Max bound targets also include Myc-repressed genes. Moreover, we show that the interaction between Myc and Max is essential for gene repression to occur. Taken together, the identification and analysis of Myc bound target genes supports a model whereby Max plays an essential and universal role in the mechanism of Myc-dependent transcriptional regulation.


Science | 2011

Mutations in U4atac snRNA, a Component of the Minor Spliceosome, in the Developmental Disorder MOPD I

Huiling He; Sandya Liyanarachchi; Keiko Akagi; Rebecca Nagy; Jingfeng Li; Rosemary C. Dietrich; Wei Li; Nikhil Sebastian; Bernard Wen; Baozhong Xin; Jarnail Singh; Pearlly S. Yan; Hansjuerg Alder; Eric Haan; Dagmar Wieczorek; Beate Albrecht; Erik G. Puffenberger; Heng Wang; Judith A. Westman; Richard A. Padgett; David E. Symer; Albert de la Chapelle

Minor RNA splicing defects can cause a major human developmental disorder. Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G>A, 51G>A, 55G>A, and 111G>A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.


BMC Medical Genomics | 2009

Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

Meng Li; Curt Balch; John S. Montgomery; Mikyoung Jeong; Jae Hoon Chung; Pearlly S. Yan; Tim H-M. Huang; Sun Kim; Kenneth P. Nephew

BackgroundCisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s) underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI) methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition.MethodsTo model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis.ResultsPromoter CGI methylation revealed a positive association (Spearman correlation of 0.99) between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance) following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells.ConclusionSelective epigenetic disruption of distinct biological pathways was observed during development of platinum resistance in ovarian cancer. Integrated analysis of DNA methylation and gene expression may allow for the identification of new therapeutic targets and/or biomarkers prognostic of disease response. Finally, our results suggest that epigenetic therapies may facilitate the prevention or reversal of transcriptional repression responsible for chemoresistance and the restoration of sensitivity to platinum-based chemotherapeutics.


American Journal of Pathology | 2003

Methylation Target Array for Rapid Analysis of CpG Island Hypermethylation in Multiple Tissue Genomes

Chuan-Mu Chen; Hsiao Ling Chen; Timothy H.C. Hsiau; Andrew H.A. Hsiau; Huidong Shi; Graham J.R. Brock; Susan H. Wei; Charles W. Caldwell; Pearlly S. Yan; Tim H M Huang

Hypermethylation of multiple CpG islands is a common event in cancer. To assess the prognostic values of this epigenetic alteration, we developed Methylation Target Array (MTA), derived from the concept of tissue microarray, for simultaneous analysis of DNA hypermethylation in hundreds of tissue genomes. In MTA, linker-ligated CpG island fragments were digested with methylation-sensitive endonucleases and amplified with flanking primers. A panel of 468 MTA amplicons, which represented the whole repertoire of methylated CpG islands in 93 breast tumors, 20 normal breast tissues, and 4 breast cancer cell lines, were arrayed on nylon membrane for probe hybridization. Positive hybridization signals detected in tumor amplicons, but not in normal amplicons, were indicative of aberrant hypermethylation in tumor samples. This is attributed to aberrant sites that were protected from methylation-sensitive restriction and were amplified by PCR in tumor samples, while the same sites were restricted and could not be amplified in normal samples. Hypermethylation frequencies of the 10 genes tested in breast tumors and cancer cell lines were 60% for GPC3, 58% for RASSF1A, 32% for 3OST3B, 30% for HOXA5, 28% for uPA, 25% for WT1, 23% for BRCA1, 9% for DAPK1, and 0% for KL. Furthermore, hypermethylation of 5 to 7 loci of these genes was significantly correlated with hormone receptor status, clinical stages, and ages at diagnosis of the patients analyzed. This novel approach thus provides an additional avenue for assessing clinicopathological consequences of DNA hypermethylation in breast cancer.


International Journal of Cancer | 2008

Identification of novel DNA methylation markers in cervical cancer

Hung Cheng Lai; Ya Wen Lin; Tim H M Huang; Pearlly S. Yan; Rui Lan Huang; Hui Chen Wang; Michael W.Y. Chan; Tang-Yuan Chu; Chien An Sun; Cheng Chang; Mu Hsien Yu

Testing for DNA methylation has potential in cancer screening. Most previous studies of DNA methylation in cervical cancer used a candidate gene approach. The aim our study was to identify novel genes that are methylated in cervical cancers and to test their potential in clinical applications. We did a differential methylation hybridization using a CpG island (CGI) microarray containing 8640 CGI tags to uncover methylated genes in squamous cell carcinomas (SCC) of the uterine cervix. Pooled DNA from cancer tissues and normal cervical swabs were used for comparison. Methylation‐specific polymerase chain reaction, bisulfite sequencing and reverse transcription polymerase chain reaction were used to confirm the methylation status in cell lines, normal cervices (n = 45), low‐grade lesions (n = 45), high‐grade lesions (HSIL; n = 58) and invasive squamous cell carcinomas (SCC; n = 22 from swabs and n = 109 from tissues). Human papillomavirus (HPV) was detected using reverse line blots. We reported 6 genes (SOX1, PAX1, LMX1A, NKX6‐1, WT1 and ONECUT1) more frequently methylated in SCC tissues (81.5, 94.4, 89.9, 80.4, 77.8 and 20.4%, respectively) than in their normal controls (2.2, 0, 6.7, 11.9, 11.1 and 0%, respectively; p < 0.0001). Parallel testing of HPV and PAX1 methylation in cervical swabs confers an improved sensitivity than HPV testing alone (80% vs. 66%) without compromising specificity (63% vs. 64%) for HSIL/SCC. Testing PAX1 methylation marker alone, the specificity for HSIL/SCC is 99%. The analysis of these novel DNA methylations may be a promising approach for the screening of cervical cancers.

Collaboration


Dive into the Pearlly S. Yan's collaboration.

Top Co-Authors

Avatar

Tim H M Huang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W.Y. Chan

National Chung Cheng University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Wen Huang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huidong Shi

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Shili Lin

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge