Ralf D. Wimmer
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf D. Wimmer.
Nature | 2015
Ralf D. Wimmer; L. Ian Schmitt; Thomas J. Davidson; Miho Nakajima; Karl Deisseroth; Michael M. Halassa
How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Simone Astori; Ralf D. Wimmer; Haydn M. Prosser; Corrado Corti; Mauro Corsi; Nicolas Liaudet; Andrea Volterra; Paul Franken; John P. Adelman; Anita Lüthi
Low-threshold (T-type) Ca2+ channels encoded by the CaV3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three CaV3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. CaV3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic CaV3.3−/− mouse line and demonstrate that CaV3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of CaV3.3 channels prevented oscillatory bursting in the low-frequency (4–10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing CaV3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in CaV3.3−/− mice were <30% compared with those in WT mice, and the remaining current, carried by CaV3.2 channels, generated dendritic [Ca2+]i signals insufficient to provoke oscillatory bursting that arises from interplay with Ca2+-dependent small conductance-type 2 K+ channels. Finally, naturally sleeping CaV3.3−/− mice showed a selective reduction in the power density of the σ frequency band (10–12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for CaV3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.
Nature | 2017
L. Ian Schmitt; Ralf D. Wimmer; Miho Nakajima; Michael Happ; Sima Mofakham; Michael M. Halassa
Although interactions between the thalamus and cortex are critical for cognitive function, the exact contribution of the thalamus to these interactions remains unclear. Recent studies have shown diverse connectivity patterns across the thalamus, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions is unknown. Here we show, by investigating the representation of two rules used to guide attention in the mouse prefrontal cortex (PFC), that the mediodorsal thalamus sustains these representations without relaying categorical information. Specifically, mediodorsal input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioural performance, whereas enhancing mediodorsal excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function, which is dissociable from categorical information relay, indicates that the thalamus has a much broader role in cognition than previously thought.
Trends in Neurosciences | 2013
Simone Astori; Ralf D. Wimmer; Anita Lüthi
Sleep spindles are distinctive electroencephalographic (EEG) oscillations emerging during non-rapid-eye-movement sleep (NREMS) that have been implicated in multiple brain functions, including sleep quality, sensory gating, learning, and memory. Despite considerable knowledge about the mechanisms underlying these neuronal rhythms, their function remains poorly understood and current views are largely based on correlational evidence. Here, we review recent studies in humans and rodents that have begun to broaden our understanding of the role of spindles in the normal and disordered brain. We show that newly identified molecular substrates of spindle oscillations, in combination with evolving technological progress, offer novel targets and tools to selectively manipulate spindles and dissect their role in sleep-dependent processes.
Nature | 2016
Michael F. Wells; Ralf D. Wimmer; L. Ian Schmitt; Guoping Feng; Michael M. Halassa
Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.
The Journal of Neuroscience | 2012
Ralf D. Wimmer; Simone Astori; Chris T. Bond; Zita Rovó; Jean Yves Chatton; John P. Adelman; Paul Franken; Anita Lüthi
Sleep spindles are synchronized 11–15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Cav3.3-type Ca2+ channels and Ca2+-dependent small-conductance-type 2 (SK2) K+ channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
International Journal of Developmental Neuroscience | 2011
L.A. Reyes-Castro; J.S. Rodriguez; G.L. Rodríguez-González; Ralf D. Wimmer; T.J. McDonald; F. Larrea; Peter W. Nathanielsz; E. Zambrano
Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra‐uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio − 1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4 ± 0.8 and 3.8 ± 0.3 sessions, respectively, p < 0.05). Performance in fixed ratio − 5 conditioning showed the RR (5.4 ± 1.1), CR (4.0 ± 0.8), and RC (5.0 ± 0.8) offspring required more sessions to reach performance criterion than CC offspring (2.5 ± 0.5, p < 0.05). Furthermore, motivational effects during the progressive ratio test revealed less responding in the RR (48.1 ± 17), CR (74.7 ± 8.4), and RC (65.9 ± 11.2) for positive reinforcement vs. the CC offspring (131.5 ± 7.5, p < 0.05). These findings demonstrate negative developmental programming effects due to perinatal isocaloric low protein diet on learning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior.
Frontiers in Neural Circuits | 2016
Zhe Chen; Ralf D. Wimmer; Matthew A. Wilson; Michael M. Halassa
The correlation between sleep integrity and attentional performance is normally interpreted as poor sleep causing impaired attention. Here, we provide an alternative explanation for this correlation: common thalamic circuits regulate sensory processing across sleep and attention, and their disruption may lead to correlated dysfunction. Using multi-electrode recordings in mice, we find that rate and rhythmicity of thalamic reticular nucleus (TRN) neurons are predictive of their functional organization in sleep and suggestive of their participation in sensory processing across states. Surprisingly, TRN neurons associated with spindles in sleep are also associated with alpha oscillations during attention. As such, we propose that common thalamic circuit principles regulate sensory processing in a state-invariant manner and that in certain disorders, targeting these circuits may be a more viable therapeutic strategy than considering individual states in isolation.
Journal of Visualized Experiments | 2014
Philip M. Brunetti; Ralf D. Wimmer; Li Liang; Joshua H. Siegle; Jakob Voigts; Matthew H. Wilson; Michael M. Halassa
The number of physiological investigations in the mouse, mus musculus, has experienced a recent surge, paralleling the growth in methods of genetic targeting for microcircuit dissection and disease modeling. The introduction of optogenetics, for example, has allowed for bidirectional manipulation of genetically-identified neurons, at an unprecedented temporal resolution. To capitalize on these tools and gain insight into dynamic interactions among brain microcircuits, it is essential that one has the ability to record from ensembles of neurons deep within the brain of this small rodent, in both head-fixed and freely behaving preparations. To record from deep structures and distinct cell layers requires a preparation that allows precise advancement of electrodes towards desired brain regions. To record neural ensembles, it is necessary that each electrode be independently movable, allowing the experimenter to resolve individual cells while leaving neighboring electrodes undisturbed. To do both in a freely behaving mouse requires an electrode drive that is lightweight, resilient, and highly customizable for targeting specific brain structures. A technique for designing and fabricating miniature, ultralight weight, microdrive electrode arrays that are individually customizable and easily assembled from commercially available parts is presented. These devices are easily scalable and can be customized to the structure being targeted; it has been used successfully to record from thalamic and cortical regions in a freely behaving animal during natural behavior.
Schizophrenia Research | 2017
Allison Young; Ralf D. Wimmer
The thalamic reticular nucleus (TRN) is an inhibitory shell positioned between the thalamus and the cortex. It is uniquely situated to modulate the flow of sensory information from the surroundings to the cortex as well as influencing ongoing cortical activity by modulating cortico-thalamo-cortical transmission. Although the thinness, architecture and location of the TRN deep in the brain has previously made this a difficult structure to study, novel optical and genetic tools have allowed for more precise targeting of this area. Recent research has implicated a role for the TRN in attention and sleep. Interestingly, impairments in attention and sleep resulting from TRN perturbation are strikingly similar to the clinical deficits observed in schizophrenia. This review aims to discuss recent evidence for the role of TRN in attention and sleep born from optogenetic work and connect these findings with those clinically observed in schizophrenia.