Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf Dürrwald is active.

Publication


Featured researches published by Ralf Dürrwald.


Archives of Virology | 2016

Taxonomy of the order Mononegavirales: update 2016

Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Influenza and Other Respiratory Viruses | 2008

Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002–2003

Kristien Van Reeth; Ian H. Brown; Ralf Dürrwald; Emanuela Foni; Geoffrey Labarque; Patrick Lenihan; Jaime Maldonado; Iwona Markowska-Daniel; Maurice Pensaert; Zdenek Pospisil; G. Koch

Objectives  Avian‐like H1N1 and human‐like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human‐like H1 emerged in the mid 1990s. This study, which was part of the EC‐funded ‘European Surveillance Network for Influenza in Pigs 1’, aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions.


Journal of Medicinal Chemistry | 2010

Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai.

Ulrike Grienke; Michaela Schmidtke; Johannes Kirchmair; Kathrin Pfarr; Peter Wutzler; Ralf Dürrwald; Gerhard Wolber; Klaus R. Liedl; Hermann Stuppner; Judith M. Rollinger

At present, neuraminidase (NA) inhibitors are the mainstay of pharmacological strategies to fight against global pandemic influenza. In the search for new antiviral drug leads from nature, the seed extract of Alpinia katsumadai has been phytochemically investigated. Among the six isolated constituents, four diarylheptanoids showed in vitro NA inhibitory activities in low micromolar ranges against human influenza virus A/PR/8/34 of subtype H1N1. The most promising constituent, katsumadain A (4; IC(50) = 1.05 +/- 0.42 microM), also inhibited the NA of four H1N1 swine influenza viruses, with IC(50) values between 0.9 and 1.64 muM, and showed antiviral effects in plaque reduction assays. Considering the flexible loop regions of NA, extensive molecular dynamics (MD) simulations were performed to study the putative binding mechanism of the T-shaped diarylheptanoid 4. Docking results showed well-established interactions between the protein and the core of this novel NA-inhibiting natural scaffold, excellent surface complementarity to the simulated binding pocket, and concordance with experimentally derived SAR data.


Emerging Infectious Diseases | 2009

Avian Bornaviruses in Psittacine Birds from Europe and Australia with Proventricular Dilatation Disease

Herbert Weissenböck; Tamás Bakonyi; Karin Sekulin; F. Ehrensperger; Robert J.T. Doneley; Ralf Dürrwald; Richard K. Hoop; Károly Erdélyi; János Gál; Jolanta Kolodziejek; Norbert Nowotny

Birds with this disease display bornaviral antigen in neural and extraneural tissues.


Innate Immunity | 2013

Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

Kerstin Skovgaard; Susanna Cirera; Ditte Vasby; Agnieszka Podolska; Solvej Østergaard Breum; Ralf Dürrwald; Michael Schlegel; Peter M. H. Heegaard

This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were quantified in lung tissue at different time points after challenge (24 h, 72 h and 14 d post-infection (p.i.). Several groups of genes were significantly regulated according to time point and infection status including pattern recognition receptors (TLR2, TLR3, TLR7, retinoic acid-inducible gene I, melanoma differentiation associated protein-5), IFN and IFN-induced genes (IFN-β, IFN-γ, IRF7, STAT1, ISG15 and OASL), cytokines (IL-1 β, IL-1RN, IL-6, IL-7, IL-10, IL-12A, TNF-α, CCL2, CCL3 and CXCL10) and several acute phase proteins. Likewise, the following miRNAs were differentially expressed in one or more time groups compared with the control pigs: miR-15a, miR-21, miR-146, miR-206, miR-223 and miR-451. At d 1 p.i. lung tissue protein levels of IL-6, IL-12 and IFN-α were significantly increased compared with the control group, and haptoglobin and C-reactive protein were significantly increased at d 3 p.i. Our results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs.


Journal of General Virology | 2009

High prevalence of amantadine resistance among circulating European porcine influenza A viruses

Andi Krumbholz; Michaela Schmidtke; Silke Bergmann; Susann Motzke; Katja Bauer; Jürgen Stech; Ralf Dürrwald; Peter Wutzler; Roland Zell

Genetic analysis of the M2 sequence of European porcine influenza A viruses reveals a high prevalence of amantadine resistance due to the substitution of serine 31 by asparagine in all three circulating subtypes, H1N1, H3N2 and H1N2. The M segment of all resistant strains belongs to a single genetic lineage. Whereas the first amantadine-resistant porcine strain was isolated in 1989, isolation of the last amantadine-susceptible strain dates to 1987, suggesting a displacement of amantadine-susceptible viruses by resistant strains soon after emergence of the mutation. Analysis of natural selection by codon-based tests indicates negative selection of codons 30, 31 and 34 which confer amantadine resistance. The codons 2, 11-28 and 54 of porcine and human strains exhibit differences in the patterns of substitution rates, suggesting different selection modes. Transfer of amantadine resistance by exchange of the M segment and viability of recombinant A/WSN/33 viruses with avian-like M segments raises concerns about the emergence of natural human reassortants.


Virus Research | 1996

SEQUENCE CHARACTERIZATION OF HUMAN BORNA DISEASE VIRUS

Juan Carlos de la Torre; Liv Bode; Ralf Dürrwald; Beatrice Cubitt; Hanns Ludwig

Borna disease virus (BDV) causes a central nervous system disease in several vertebrate animal species, which is manifest by behavioral abnormalities. Seroepidemiologic data suggest that BDV might infect humans, possibly being associated with certain mental disorders. This is further supported by the detection of both BDV-specific antigens and RNA sequences in peripheral blood mononuclear cells (PBMCs) of psychiatric patients. For the first time the sequence characterization of human BDV is documented here. BDV was recovered by co-cultivation techniques from the PBMCs of three hospitalized psychiatric patients. BDV was unequivocally identified based on sequence identification of BDV open reading frames (ORFs) p24, p16 and p56, as well as of the predicted catalytic domain of the BDV L polymerase. Each human BDV isolate had an unique sequence, but they displayed a high degree of sequence conservation with respect of BDV isolates from naturally infected animals of different species.


Journal of Virology | 2015

Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

Simon J. Watson; Pinky Langat; Scott M. Reid; Tommy Tsan-Yuk Lam; Matt Cotten; Michael D. Kelly; Kristien Van Reeth; Yu Qiu; Gaëlle Simon; Emilie Bonin; Emanuela Foni; Chiara Chiapponi; Lars Erik Larsen; Charlotte Kristiane Hjulsager; Iwona Markowska-Daniel; Kinga Urbaniak; Ralf Dürrwald; Michael Schlegel; Anita Huovilainen; Irit Davidson; Ádám Dán; W.L.A. Loeffen; Stephanie Edwards; Michel Bublot; Thaïs Vila; Jaime Maldonado; Laura Valls; Ian H. Brown; Oliver G. Pybus; Paul Kellam

ABSTRACT The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data have not yet been described for Europe. We report the first large-scale genomic characterization of 290 swine influenza viruses collected from 14 European countries between 2009 and 2013. A total of 23 distinct genotypes were identified, with the 7 most common comprising 82% of the incidence. Contrasting epidemiological dynamics were observed for two of these genotypes, H1huN2 and H3N2, with the former showing multiple long-lived geographically isolated lineages, while the latter had short-lived geographically diffuse lineages. At least 32 human-swine transmission events have resulted in A(H1N1)pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed in European swine, combined with the identification of a genotype similar to the A(H3N2)v genotype in North America, underlines the importance of continued swine surveillance in Europe for the purposes of maintaining public health. This report further reveals that the emergences and drivers of virus evolution in swine differ at the global level. IMPORTANCE The influenza A(H1N1)pdm09 virus contains a reassortant genome with segments derived from separate virus lineages that evolved in different regions of the world. In particular, its neuraminidase and matrix segments were derived from the Eurasian avian virus-like (“avian-like”) lineage that emerged in European swine in the 1970s. However, while large-scale genomic characterization of swine has been reported for southern China and North America, no equivalent study has yet been reported for Europe. Surveillance of swine herds across Europe between 2009 and 2013 revealed that the A(H1N1)pdm09 virus is established in European swine, increasing the number of circulating lineages in the region and increasing the possibility of the emergence of a genotype with human pandemic potential. It also has implications for veterinary health, making prevention through vaccination more challenging. The identification of a genotype similar to the A(H3N2)v genotype, causing zoonoses at North American agricultural fairs, underlines the importance of continued genomic characterization in European swine.


Archives of Virology | 2015

Taxonomic reorganization of the family Bornaviridae

Jens H. Kuhn; Ralf Dürrwald; Yīmíng Bào; Thomas Briese; Kathryn M. Carbone; Anna N. Clawson; Joseph L. DeRisi; Wolfgang Garten; Peter B. Jahrling; Jolanta Kolodziejek; Dennis Rubbenstroth; Martin Schwemmle; Mark D. Stenglein; Keizo Tomonaga; Herbert Weissenböck; Norbert Nowotny

Knowledge of bornaviruses has expanded considerably during the last decade. A possible reservoir of mammalian Borna disease virus has been identified, divergent bornaviruses have been detected in birds and reptiles, and endogenous bornavirus-like elements have been discovered in the genomes of vertebrates of several species. Previous sequence comparisons and alignments have indicated that the members of the current family Bornaviridae are phylogenetically diverse and are not adequately classified in the existing bornavirus taxonomy supported by the International Committee on Taxonomy of Viruses (ICTV). We provide an update of these analyses and describe their implications for taxonomy. We propose retaining the family name Bornaviridae and the genus Bornavirus but reorganizing species classification. PAirwise Sequence Comparison (PASC) of bornavirus genomes and Basic Local Alignment Search Tool (BLAST) comparison of genomic and protein sequences, in combination with other already published phylogenetic analyses and known biological characteristics of bornaviruses, indicate that this genus should include at least five species: Mammalian 1 bornavirus (classical Borna disease virus and divergent Borna disease virus isolate No/98), Psittaciform 1 bornavirus (avian/psittacine bornaviruses 1, 2, 3, 4, 7), Passeriform 1 bornavirus (avian/canary bornaviruses C1, C2, C3, LS), Passeriform 2 bornavirus (estrildid finch bornavirus EF), and Waterbird 1 bornavirus (avian bornavirus 062CG). This classification is also in line with biological characteristics of these viruses and their vertebrate hosts. A snake bornavirus, proposed to be named Loveridge’s garter snake virus 1, should be classified as a member of an additional species (Elapid 1 bornavirus), unassigned to a genus, in the family Bornaviridae. Avian bornaviruses 5, 6, MALL, and another “reptile bornavirus” (“Gaboon viper virus”) should stay unclassified until further information becomes available. Finally, we propose new virus names and abbreviations when necessary to achieve clear differentiation and unique identification.


Journal of Virological Methods | 1994

Detection of borna disease virus RNA in naturally infected animals by a nested polymerase chain reaction

Wolfgang Zimmermann; Ralf Dürrwald; Hanns Ludwig

Borna disease virus in naturally infected horses, a donkey and sheep was detected for the first time by amplification of viral RNA using PCR. In contrast to a control group of healthy horses, brain tissue was positive by this assay in all animals with neurological symptoms. The use of a second round of PCR with nested primers following Southern hybridization confirmed the specificity and increased the sensitivity of the test. Comparison with conventional methods recommends this technique for monitoring of BDV infections at a molecular level.

Collaboration


Dive into the Ralf Dürrwald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jolanta Kolodziejek

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Kerstin Skovgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lars Erik Larsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter M. H. Heegaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert Weissenböck

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge