Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Skovgaard is active.

Publication


Featured researches published by Kerstin Skovgaard.


Fungal Genetics and Biology | 2009

A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex

Kerry O'Donnell; Cécile Gueidan; Stacy Sink; Peter R. Johnston; Pedro W. Crous; Anthony E. Glenn; Ron Riley; Nicholas C. Zitomer; Patrick Colyer; Cees Waalwijk; Theo van der Lee; Antonio Moretti; Seogchan Kang; Hye Seon Kim; David M. Geiser; Jean H. Juba; R. P. Baayen; M. G. Cromey; Sean Bithell; Deanna A. Sutton; Kerstin Skovgaard; Randy C. Ploetz; H. Corby Kistler; Monica L. Elliott; Mike Davis; Brice A. J. Sarver

We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex (FOSC). Of the 850 isolates typed, 101 EF-1alpha, 203 IGS rDNA, and 256 two-locus sequence types (STs) were differentiated. Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant. This analysis also revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin. A congruence analysis, comparing partial EF-1alpha and IGS rDNA bootstrap consensus, identified a significant number of conflicting relationships dispersed throughout the bipartitions, suggesting that some of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Phytopathology | 2001

Evolution of Fusarium oxysporum f. sp. vasinfectum Races Inferred from Multigene Genealogies

Kerstin Skovgaard; Helgard I. Nirenberg; Kerry O'Donnell; Søren Rosendahl

ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.


Veterinary Research | 2009

Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs.

Kerstin Skovgaard; Shila Mortensen; Mette Boye; Karin T. Poulsen; Fiona M. Campbell; P. David Eckersall; Peter M. H. Heegaard

The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues.


Innate Immunity | 2013

Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

Kerstin Skovgaard; Susanna Cirera; Ditte Vasby; Agnieszka Podolska; Solvej Østergaard Breum; Ralf Dürrwald; Michael Schlegel; Peter M. H. Heegaard

This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were quantified in lung tissue at different time points after challenge (24 h, 72 h and 14 d post-infection (p.i.). Several groups of genes were significantly regulated according to time point and infection status including pattern recognition receptors (TLR2, TLR3, TLR7, retinoic acid-inducible gene I, melanoma differentiation associated protein-5), IFN and IFN-induced genes (IFN-β, IFN-γ, IRF7, STAT1, ISG15 and OASL), cytokines (IL-1 β, IL-1RN, IL-6, IL-7, IL-10, IL-12A, TNF-α, CCL2, CCL3 and CXCL10) and several acute phase proteins. Likewise, the following miRNAs were differentially expressed in one or more time groups compared with the control pigs: miR-15a, miR-21, miR-146, miR-206, miR-223 and miR-451. At d 1 p.i. lung tissue protein levels of IL-6, IL-12 and IFN-α were significantly increased compared with the control group, and haptoglobin and C-reactive protein were significantly increased at d 3 p.i. Our results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs.


Mycologia | 2003

Fusarium commune is a new species identified by morphological and molecular phylogenetic data

Kerstin Skovgaard; Søren Rosendahl; Kerry O'Donnell; Helgard I. Nirenberg

Fusarium commune sp. nov. was isolated from soil and Pisum sativum in Denmark and several widespread locations within the northern hemisphere from diverse substrates including white pine, Douglas fir, carnation, corn, carrot, barley and soil. Fusarium commune is characterized by and distinguished from its putative sister taxon, the F. oxysporum complex, in having long, slender monophialides and polyphialides when cultured in the dark. Based on the combined DNA sequence data from translation elongation factor 1α (EF-1α) and the mitochondrial small subunit ribosomal DNA (mtSSU rDNA), the 15 isolates of F. commune analyzed formed a strongly supported clade closely related to but independent of the F. oxysporum and Gibberella fujikuroi species complexes.


FEMS Microbiology Ecology | 2002

Population structure and pathogenicity of members of the Fusarium oxysporum complex isolated from soil and root necrosis of pea (Pisum sativum L.)

Kerstin Skovgaard; Lars Bødker; Søren Rosendahl

Forty-nine strains of the Fusarium oxysporum complex were isolated from five different sample locations within two neighboring pea fields. Of these, 39 strains were isolated from soil and 10 from pea plants showing symptoms of root rot. Twenty-eight of the isolates were tested for pathogenicity towards pea. Based on percentage discoloration of the roots and stem base, the isolates were divided into three groups: seven strains were pathogenic, 14 strains were weakly pathogenic, and seven strains were non-pathogenic towards pea. To assess the genetic relatedness of all 49 strains, gene genealogies were constructed from aligned DNA sequences from part of the translation elongation factor, nitrate reductase, beta tubulin, and mitochondrial small subunit rDNA. Maximum parsimony analysis of the combined data set yielded a single most-parsimonious tree containing three strongly supported clades which may represent cryptic species. No correlation was observed between the multigene phylogeny and pathogenicity toward pea, strain geographic origin and substrate (soil or plant) from which the strains were isolated. Strains that were non-pathogenic, weakly pathogenic or pathogenic sometimes shared the same multilocus genotype. These results suggest that strains pathogenic and putatively non-pathogenic to pea are very closely related genetically.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates

Jayda Siggers; Per T. Sangild; Tim Kåre Jensen; Richard H. Siggers; Kerstin Skovgaard; Ann Cathrine Findal Støy; Bent Borg Jensen; Thomas Thymann; Stine B. Bering; Mette Boye

Necrotizing enterocolitis (NEC) in preterm infants develops very rapidly from a mild intolerance to enteral feeding into intestinal mucosal hemorrhage, inflammation, and necrosis. We hypothesized that immediate feeding-induced gut responses precede later clinical NEC symptoms in preterm pigs. Fifty-six preterm pigs were fed total parenteral nutrition (TPN) for 48 h followed by enteral feeding for 0, 8, 17, or 34 h with either colostrum (Colos, n = 20) or formula (Form, n = 31). Macroscopic NEC lesions were detected in Form pigs throughout the enteral feeding period (20/31, 65%), whereas most Colos pigs remained protected (1/20, 5%). Just 8 h of formula feeding induced histopathological lesions, as evidenced by capillary stasis and necrosis, epithelial degeneration, edema, and mucosal hemorrhage. These immediate formula-induced changes were paralleled by decreased digestive enzyme activities (lactase and dipeptidylpeptidase IV), increased nutrient fermentation, and altered expression of innate immune defense genes such as interleukins (IL-1α, IL-6, IL-18), nitric oxide synthetase, tight junction proteins (claudins), Toll-like receptors (TLR-4), and TNF-α. In contrast, the first hours of colostrum feeding induced no histopathological lesions, increased maltase activity, and induced changes in gene expressions related to tissue development. Total bacterial density was high after 2 days of parenteral feeding and was not significantly affected by diet (colostrum, formula) or length of enteral feeding (8-34 h), except that a few bacterial groups (Clostridium, Enterococcus, Streptococcus species) increased with time. We conclude that a switch from parenteral to enteral nutrition rapidly induces diet-dependent histopathological, functional, and proinflammatory insults to the immature intestine. Great care is required when introducing enteral feeds to TPN-fed preterm infants, particularly when using formula, because early feeding-induced insults may predispose to NEC lesions that are difficult to revert by later dietary or medical interventions.


BMC Genomics | 2012

Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

Agnieszka Podolska; Christian Anthon; Mads Bak; Niels Tommerup; Kerstin Skovgaard; Peter Mh Heegaard; Jan Gorodkin; Susanna Cirera; Merete Fredholm

BackgroundMicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited.ResultsIn this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection.ConclusionsThis is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates

Jayda Siggers; Mette Viberg Østergaard; Richard H. Siggers; Kerstin Skovgaard; Lars Mølbak; Thomas Thymann; Mette Schmidt; Hanne Kristine Møller; Stig Purup; Lisbeth Nielsen Fink; Hanne Frøkiær; Mette Boye; Per T. Sangild; Stine B. Bering

Preterm neonates are susceptible to gastrointestinal disorders such as necrotizing enterocolitis (NEC). Maternal milk and colostrum protects against NEC via growth promoting, immunomodulatory, and antimicrobial factors. The fetal enteral diet amniotic fluid (AF), contains similar components, and we hypothesized that postnatal AF administration reduces inflammatory responses and NEC in preterm neonates. Preterm pigs (92% gestation) were delivered by caesarean section and fed parental nutrition (2 days) followed by enteral (2 days) porcine colostrum (COLOS, n = 7), infant formula (FORM, n = 13), or AF supplied before and after introduction of formula (AF, n = 10) in experiment 1, and supplied only during the enteral feeding period in experiment 2 (FORM, n = 16; AF, n = 14). The NEC score was reduced in both AF and COLOS pigs, relative to FORM, when AF was provided prior to full enteral feeding (9.9 and 7.7 compared with 17.3, P < 0.05). There was no effect of AF when provided only during enteral feeding. AF pigs showed decreased bacterial abundance in colon and intestinal inflammation-related genes (e.g., TNF-α, IL-1α, IL-6, NOS) were downregulated, relative to FORM pigs with NEC. Anti-inflammatory properties of AF were supported by delayed maturation and decreased TNF-α production in murine dendritic cells, as well as increased proliferation and migration, and downregulation of IL-6 expression in intestinal cells (IEC-6, IPEC-J2). Like colostrum, AF may reduce NEC development in preterm neonates by suppressing the proinflammatory responses to enteral formula feeding and gut colonization when provided before the onset of NEC.

Collaboration


Dive into the Kerstin Skovgaard's collaboration.

Top Co-Authors

Avatar

Peter M. H. Heegaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Per T. Sangild

University of Copenhagen Faculty of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Mette Boye

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shila Mortensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Thymann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanna Cirera

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge