Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf-Jörg Fischer is active.

Publication


Featured researches published by Ralf-Jörg Fischer.


Molecular Microbiology | 2008

PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum

Falk Hillmann; Ralf-Jörg Fischer; Florence Saint-Prix; Laurence Girbal; Hubert Bahl

Clostridia belong to those bacteria which are considered as obligate anaerobe, e.g. oxygen is harmful or lethal to these bacteria. Nevertheless, it is known that they can survive limited exposure to air, and often eliminate oxygen or reactive derivatives via NAD(P)H‐dependent reduction. This system does apparently contribute to survival after oxidative stress, but is insufficient to establish long‐term tolerance of aerobic conditions. Here we show that manipulation of the regulatory mechanism of this defence mechanism can trigger aerotolerance in the obligate anaerobe Clostridium acetobutylicum. Deletion of a peroxide repressor (PerR)‐homologous protein resulted in prolonged aerotolerance, limited growth under aerobic conditions and rapid consumption of oxygen from an aerobic environment. The mutant strain also revealed higher resistance to H2O2 and activities of NADH‐dependent scavenging of H2O2 and organic peroxides in cell‐free extracts increased by at least one order of magnitude. Several genes encoding the putative enzymes were upregulated and identified as members of the clostridial PerR regulon, including the heat shock protein Hsp21, a reverse rubrerythrin which was massively produced and became the most abundant protein in the absence of PerR. This multifunctional protein is proposed to play the crucial role in the oxidative stress defence.


Journal of Molecular Microbiology and Biotechnology | 2011

Genome-Wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum

Christina Grimmler; Holger Janssen; Désirée Krauβe; Ralf-Jörg Fischer; Hubert Bahl; Peter Dürre; Wolfgang Liebl; Armin Ehrenreich

Clostridium acetobutylicum is able to switch from acidogenic growth to solventogenic growth. We used phosphate-limited continuous cultures that established acidogenic growth at pH 5.8 and solventogenic growth at pH 4.5. These cultures allowed a detailed transcriptomic study of the switch from acidogenesis to solventogenesis that is not superimposed by sporulation and other growth phase-dependent parameters. These experiments led to new insights into the physiological role of several genes involved in solvent formation. The adc gene for acetone decarboxylase is upregulated well before the rest of the sol locus during the switch, and pyruvate decarboxylase is induced exclusively for the period of this switch. The aldehyde-alcohol dehydrogenase gene adhE1 located in the sol operon is regulated antagonistically to the paralog adhE2 that is expressed during acidogenic conditions. A similar antagonistic pattern can be seen with the two paralogs of thiolase genes, thlA and thlB. Interestingly, the genes coding for the putative cellulosome in C. acetobutylicum are exclusively transcribed throughout solventogenic growth. The genes for stress response are only induced during the shift but not in the course of solventogenesis when butanol is present in the culture. Finally, the data clearly indicate that solventogenesis is independent from sporulation.


Journal of Biotechnology | 2012

A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum--solvent stress caused by a transient n-butanol pulse.

Holger Janssen; Christina Grimmler; Armin Ehrenreich; Hubert Bahl; Ralf-Jörg Fischer

The main product of the anaerobic fermentative bacterium Clostridium acetobutylicum is n-butanol, an organic solvent with severe toxic effects on the cells. Therefore, the identification of the molecular factors related to n-butanol stress constitutes a major strategy for furthering the understanding of the biotechnological production of n-butanol, an important industrial biofuel. Previous reports concerning n-butanol stress in C. acetobutylicum dealt exclusively with batch cultures. In this study, for the first time a comprehensive transcriptional analysis of n-butanol-stressed C. acetobutylicum was conducted using stable steady state acidogenic chemostat cultures. A total of 358 differentially expressed genes were significantly affected by n-butanol stress. Similarities, such as the upregulation of general stress genes, and differences in gene expression were compared in detail with earlier DNA microarrays performed in batch cultivation experiments. The main result of this analysis was the observation that genes involved in amino acid and nucleotide biosynthesis, as well as genes for specific transport systems were upregulated by n-butanol. Our results exclude any transcriptional response triggered by exogenous pH changes or solventogenic n-butanol formation. Finally, our data suggest that metabolic flux through the glycerolipid biosynthetic pathway increases, confirming that C. acetobutylicum modifies the cytoplasmic membrane composition in response to n-butanol stress.


Journal of Bacteriology | 2006

Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

Ralf-Jörg Fischer; Sonja Oehmcke; Uta Meyer; Maren Mix; Katrin Schwarz; Tomas Fiedler; Hubert Bahl

The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in P(i)-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to P(i) pulses. Specific mRNA transcripts were found only when external P(i) concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5.


BMC Systems Biology | 2011

A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture.

Sylvia Haus; Sara Jabbari; Thomas Millat; Holger Janssen; Ralf-Jörg Fischer; Hubert Bahl; John R. King; Olaf Wolkenhauer

BackgroundClostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible.ResultsWe present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation.ConclusionsIncorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.


Journal of Bacteriology | 2009

The Role of PerR in O2-Affected Gene Expression of Clostridium acetobutylicum

Falk Hillmann; Christina Döring; Oliver Riebe; Armin Ehrenreich; Ralf-Jörg Fischer; Hubert Bahl

In the strict anaerobe Clostridium acetobutylicum, a PerR-homologous protein has recently been identified as being a key repressor of a reductive machinery for the scavenging of reactive oxygen species and molecular O(2). In the absence of PerR, the full derepression of its regulon resulted in increased resistance to oxidative stress and nearly full tolerance of an aerobic environment. In the present study, the complementation of a Bacillus subtilis PerR mutant confirmed that the homologous protein from C. acetobutylicum acts as a functional peroxide sensor in vivo. Furthermore, we used a transcriptomic approach to analyze gene expression in the aerotolerant PerR mutant strain and compared it to the O(2) stimulon of wild-type C. acetobutylicum. The genes encoding the components of the alternative detoxification system were PerR regulated. Only few other targets of direct PerR regulation were identified, including two highly expressed genes encoding enzymes that are putatively involved in the central energy metabolism. All of them were highly induced when wild-type cells were exposed to sublethal levels of O(2). Under these conditions, C. acetobutylicum also activated the repair and biogenesis of DNA and Fe-S clusters as well as the transcription of a gene encoding an unknown CO dehydrogenase-like enzyme. Surprisingly few genes were downregulated when exposed to O(2), including those involved in butyrate formation. In summary, these results show that the defense of this strict anaerobe against oxidative stress is robust and by far not limited to the removal of O(2) and its reactive derivatives.


Applied Microbiology and Biotechnology | 2013

A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures

Thomas Millat; Holger Janssen; Graeme J. Thorn; John R. King; Hubert Bahl; Ralf-Jörg Fischer; Olaf Wolkenhauer

In response to changing extracellular pH levels, phosphate-limited continuous cultures of Clostridium acetobutylicum reversibly switches its metabolism from the dominant formation of acids to the prevalent production of solvents. Previous experimental and theoretical studies have revealed that this pH-induced metabolic switch involves a rearrangement of the intracellular transcriptomic, proteomic and metabolomic composition of the clostridial cells. However, the influence of the population dynamics on the observations reported has so far been neglected. Here, we present a method for linking the pH shift, clostridial growth and the acetone–butanol–ethanol fermentation metabolic network systematically into a model which combines the dynamics of the external pH and optical density with a metabolic model. Furthermore, the recently found antagonistic expression pattern of the aldehyde/alcohol dehydrogenases AdhE1/2 and pH-dependent enzyme activities have been included into this combined model. Our model predictions reveal that the pH-induced metabolic shift under these experimental conditions is governed by a phenotypic switch of predominantly acidogenic subpopulation towards a predominantly solventogenic subpopulation. This model-driven explanation of the pH-induced shift from acidogenesis to solventogenesis by population dynamics casts an entirely new light on the clostridial response to changing pH levels. Moreover, the results presented here underline that pH-dependent growth and pH-dependent specific enzymatic activity play a crucial role in this adaptation. In particular, the behaviour of AdhE1 and AdhE2 seems to be the key factor for the product formation of the two phenotypes, their pH-dependent growth, and thus, the pH-induced metabolic switch in C. acetobutylicum.


Metabolic Engineering | 2016

Acetone production with metabolically engineered strains of Acetobacterium woodii.

Sabrina Hoffmeister; Marzena Gerdom; Frank R. Bengelsdorf; Sonja Linder; Sebastian Flüchter; Hatice Öztürk; Wilfried Blümke; Antje May; Ralf-Jörg Fischer; Hubert Bahl; Peter Dürre

Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.


FEBS Letters | 2007

Desulfoferrodoxin of Clostridium acetobutylicum functions as a superoxide reductase

Oliver Riebe; Ralf-Jörg Fischer; Hubert Bahl

Desulfoferrodoxin (cac2450) of Clostridium acetobutylicum was purified after overexpression in E. coli. In an in vitro assay the enzyme exhibited superoxide reductase activity with rubredoxin (cac2778) of C. acetobutylicum as the proximal electron donor. Rubredoxin was reduced by ferredoxin:NADP+ reductase from spinach and NADPH. The superoxide anions, generated from dissolved oxygen using Xanthine and Xanthine oxidase, were reduced to hydrogen peroxide. Thus, we assume that desulfoferrodoxin is the key factor in the superoxide reductase dependent part of an alternative pathway for detoxification of reactive oxygen species in this obligate anaerobic bacterium.


Microbial Biotechnology | 2013

Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

Thomas Millat; Holger Janssen; Hubert Bahl; Ralf-Jörg Fischer; Olaf Wolkenhauer

In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady‐state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n‐butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH‐dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.

Collaboration


Dive into the Ralf-Jörg Fischer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dürre

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Antje May

University of Rostock

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge