Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf Köber is active.

Publication


Featured researches published by Ralf Köber.


Environmental Earth Sciences | 2013

Impacts of the use of the geological subsurface for energy storage: an investigation concept

Sebastian Bauer; Christof Beyer; Frank Dethlefsen; Peter Dietrich; Rainer Duttmann; Markus Ebert; Volker Feeser; Uwe Jens Görke; Ralf Köber; Olaf Kolditz; Wolfgang Rabbel; Tom Schanz; Dirk Schäfer; Hilke Würdemann; Andreas Dahmke

New methods and technologies for energy storage are required to make a transitionto renewable energy sources; in Germany this transition is termed “Energiewende”. Subsurface georeservoirs, such as salt caverns for hydrogen, compressed air, and methane storage or porous formations for heat and gas storage, offer the possibility of hosting large amounts of energy. When employing these geological storage facilities, an adequate system and process understanding is essential in order to characterize and to predict the complex and interacting effects on other types of subsurface use and on protected entities. In order to make optimal use of georeservoirs, a comprehensive use planning of the subsurface is required that allocates specific uses to appropriate subsurface locations. This paper presents a generic methodology on how subsurface use planning can be conducted and how its scientific basis can be developed. Although synthetic, realistic scenarios for the use of the geological underground for energy storage are parameterized and numerically simulated, accounting for other kinds of subsurface use already in place. From these scenario analyses, the imposed coupled hydraulic, thermal, mechanical and chemical processes, as well as mutual effects and influences on protected entities are assessed and generalized. Based on these, a first methodology for large-scale planning of the geological subsurface considering different surface and subsurface usage scenarios may also be derived.


Journal of Contaminant Hydrology | 2003

Competing TCE and cis-DCE degradation kinetics by zero-valent iron—experimental results and numerical simulation

Dirk Schäfer; Ralf Köber; Andreas Dahmke

The successful dechlorination of mixtures of chlorinated hydrocarbons with zero-valent metals requires information concerning the kinetics of simultaneous degradation of different contaminants. This includes intraspecies competitive effects (loading of the reactive iron surface by a single contaminant) as well as interspecies competition of several contaminants for the reactive sites available. In columns packed with zero-valent iron, the degradation behaviour of trichloroethylene (TCE), cis-dichloroethylene (DCE) and mixtures of both was measured in order to investigate interspecies competition. Although a decreasing rate of dechlorination is to be expected, when several degradable substances compete for the reactive sites on the iron surface, TCE degradation is nearly unaffected by the presence of cis-DCE. In contrast, cis-DCE degradation rates decrease significantly when TCE is added. A new modelling approach is developed in order to identify and quantify the observed competitive effects. The numerical model TBC (Transport, Biochemistry and Chemistry, Schäfer et al., 1998a) is used to describe adsorption, desorption and dechlorination in a mechanistic way. Adsorption and degradation of a contaminant based on a limited number of reactive sites leads to a combined zero- and first-order degradation kinetics for high and low concentrations, respectively. The adsorption of several contaminants with different sorption parameters to a limited reactive surface causes interspecies competition. The reaction scheme and the parameters required are successfully transferred from Arnold and Roberts (2000b) to the model TBC. The degradation behaviour of the mixed contamination observed in the column experiments can be related to the adsorption properties of TCE and cis-DCE. By predicting the degradation of the single substances TCE and cis-DCE as well as mixtures of both, the calibrated model is used to investigate the effects of interspecies competition on the design of permeable reactive iron barriers. Even if TCE is present in only small concentrations (>3% of molar cis-DCE concentration) it is the contaminant limiting the residence time and the required thickness of the iron barrier.


Ground Water | 2009

Evaluation of Combined Direct-Push Methods Used for Aquifer Model Generation

Ralf Köber; G. Hornbruch; Carsten Leven; L. Tischer; Jochen Grossmann; Peter Dietrich; Holger Weiss; Andreas Dahmke

Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.


Environmental Earth Sciences | 2017

Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project

Alina Kabuth; Andreas Dahmke; Christof Beyer; Lars Bilke; Frank Dethlefsen; Peter Dietrich; Rainer Duttmann; Markus Ebert; Volker Feeser; Uwe-Jens Görke; Ralf Köber; Wolfgang Rabbel; Tom Schanz; Dirk Schäfer; Hilke Würdemann; Sebastian Bauer

New techniques and methods for energy storage are required for the transition to a renewable power supply, termed “Energiewende” in Germany. Energy storage in the geological subsurface provides large potential capacities to bridge temporal gaps between periods of production of solar or wind power and consumer demand and may also help to relieve the power grids. Storage options include storage of synthetic methane, hydrogen or compressed air in salt caverns or porous formations as well as heat storage in porous formations. In the ANGUS+ project, heat and gas storage in porous media and salt caverns and aspects of their use on subsurface spatial planning concepts are investigated. The optimal dimensioning of storage sites, the achievable charging and discharging rates and the effective storage capacity as well as the induced thermal, hydraulic, mechanical, geochemical and microbial effects are studied. The geological structures, the surface energy infrastructure and the governing processes are parameterized, using either literature data or own experimental studies. Numerical modeling tools are developed for the simulation of realistically defined synthetic storage scenarios. The feasible dimensioning of storage applications is assessed in site-specific numerical scenario analyses, and the related spatial extents and time scales of induced effects connected with the respective storage application are quantified. Additionally, geophysical monitoring methods, which allow for a better spatial resolution of the storage operation, induced effects or leakages, are evaluated based on these scenario simulations. Methods for the assessment of such subsurface geological storage sites are thus developed, which account for the spatial extension of the subsurface operation itself as well as its induced effects and the spatial requirements of adequate monitoring methods.


Archive | 2013

Environmental and Process Monitoring

Dirk Schäfer; Said Attia al Hagrey; Esben Auken; Andreas Bahr; Matthias Beyer; Andreas Dahmke; Ingolf Dumke; Nikolaj Foged; Markus Furche; Michael Gräber; Jochen Großmann; Max Helkjaer; Ralf Köber; Jürgen Poggenburg; Gert Naue; Stefan Schlömer; Christian Seeger; Lars Tischer; Angelika Vidal; Carla E. Wiegers; Christian Wöhrl

For enhanced gas recovery (EGR) using CO2 as well as for CO2 storage in depleted gas fields it needs to be shown that injection and storage is save and neither population nor environment is exposed to risks during operation or afterwards. This requires the development and application of methods to monitor groundwater, vadose zone and atmosphere. Therefore, extensive investigations of the near-surface aquifers were performed to characterize the geological structure and the geochemical and hydraulic conditions as part of a baseline-monitoring and to specify input parameters for model simulations. If CO2 leakage should occur and CO2 migrates upwards from the storage complex, shallow freshwater aquifers are the first protected good that might be affected. Based on the model simulations, parameters that would be affected by leakages were specified and parameter changes as well as spatial extension of the expected changes quantified. A comparison of the model results with measured natural variabilities show that especially pH and TIC (total inorganic carbon), but under certain conditions also electric conductivity and aqueous calcium concentration (Ca) are most suited parameters for the detection of CO2 leakages based on observation wells in shallow aquifers. It was an important result that the temporal fluctuations of groundwater composition are generally small but spatial variations are large.


Journal of Contaminant Hydrology | 2016

Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.

Tessa J. Strutz; G. Hornbruch; Andreas Dahmke; Ralf Köber

Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a significant role for attachment, mainly at lower injection velocities. Since the injection of fluids at real sites leads to descending flow velocities with increasing radial distance from the injection point, the simulation of particle transport requires accounting for all deposition processes mentioned above. Thus, the derived mean parameter set can be used as a basis for quantitative and predictive simulations of particle distributions and clogging effects at both lab and field scale. Since decreases in K can change the flow system, which may have positive as well as negative implications for the in situ remediation technology at a contaminated site, a reliable simulation is thus of great importance for NZVI injection and prediction.


Bioremediation Journal | 2006

Kinetics of oxygen release from ORC

Dirk Schäfer; Markus Ebert; Ralf Köber; Volkmar Plagentz; Andreas Dahmke

ABSTRACT Oxygen release compounds (ORC) are one possibility to enhance aerobic degradation in contaminated aquifers. However, some applications have been reported where oxygen concentrations did not meet expectations, this was attributed to ground water composition, e.g., high pH. Column experiments have been performed and the measurements were interpreted using a numerical model to investigate oxygen release kinetics from ORC in more detail. Because the zero-order rate law recommended by the manufacturer did not reflect the measurements, a more complex kinetic scheme was developed. The simulations show a minor influence of inorganic ground water constituents on oxygen release from ORC in the columns due to buffering by mineral precipitation, but an enhanced oxygen release if aerobic degradation takes place. If ORC is applied as socks, the impact of inorganic ground water composition increases compared to the application in column experiments. A simple quadratic equation is provided to estimate oxygen release rate from the buffer capacity of the ground water versus increasing pH—a parameter easily determinable in the laboratory. For slightly mineralized waters with high pH, this equation forecasts decreased oxygen release, but no total inhibition of oxygen release.


Environmental Earth Sciences | 2016

Parameterizability of processes in subsurface energy and mass storage

Frank Dethlefsen; Christof Beyer; Volker Feeser; Ralf Köber

The numerical simulation of scenarios is a promising approach when quantifying the potential hydraulic, thermal, geomechanical, and chemical effects of subsurface energy and mass storage. Particularly, the coupling of processes is a strong point in numerical simulations. This study defines the geoscientific parameter demand as well as the demand for process understanding for simulating subsurface energy and mass storage, describes the existing numerical codes to conduct the simulations, provides generally valid parameter values, and emphasizes on discussing parameters where only few values exist. In this context, it is exemplified that the parameterizability of the regarded processes is determined by an uncertainty in parameter values (variability or aleatory uncertainty) as well as in the understanding of processes (epistemic uncertainty) as it was suggested by Walker et al. (Integr Assess 4:5–17, 2003). The study categorizes the knowledge about parameter values and processes into these uncertainty groups and exemplarily evaluates the impacts of the uncertainties. Using this approach illustrates the concepts needed for calculating prediction errors of numerical scenario simulations, such as sensitivity analyses in the case of statistical data uncertainty and laboratory or field studies in the case of scenario uncertainties.


Chemosphere | 2018

The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70 °C

Nicolas Koproch; Andreas Dahmke; Ralf Köber

High-temperature thermal energy storage in shallow aquifers can potentially increase ambient groundwater temperatures up to 70 °C or even more. Since an increase in temperature is expected to influence contaminant mass flux into groundwater monitoring the spreading of organic contaminants located in the subsurface is crucial. In numerous former studies, the NAPL solubility, one major parameter controlling mass flux on field scale, was measured at temperatures up to 70 °C for a broad spectrum of organic substances. However, quantitative calculations of solubilities as a function of temperature considering a compiled database are largely missing. Aiming to examine the reliability of existing solubility-temperature relationships, to describe them functionally and further to identify knowledge gaps, previously published data on solubilities of 42 different organic groundwater contaminants were evaluated in this study. By using a common temperature regression function, the calculated solubility curves from compiled solubility data for 5-70 °C show relative changes between a few percent (CHCs and BTEX) and up to 2000% (PAHs). As published temperature-dependent solubilities for chlorinated ethylenes are contradictory in parts, solubilities of tetrachloroethylene, trichloroethylene, 1,2-cis-dichloroethylene and 1,2-trans-dichloroethylene were additionally investigated in more detail using batch experiments between 5 and 70 °C. The results show distinctive solubility minima at medium temperatures (20-40 °C) with concentrations decreasing from 5 °C to the minimum by 10-20%. The measured and calculated temperature-dependent solubilities enable a more reliable assessment of thermal energy storage at contaminated sites, of existing thermal remediation approaches and of combinations of underground heat storage with groundwater remediation.


Environmental Earth Sciences | 2016

Erratum to: Nanoscale zero-valent iron flakes for groundwater treatment

Ralf Köber; Henner Hollert; G. Hornbruch; M. Jekel; A. Kamptner; N. Klaas; Hanna Maes; K.-M. Mangold; E. Martac; A. Matheis; H. Paar; Andreas Schäffer; H. Schell; Andreas Schiwy; K. R. Schmidt; T. J. Strutz; S. Thümmler; Andreas Tiehm; Jürgen Braun

The original article has been published inadvertently with some errors. Corrected and supporting information is given below. 25 mL of 6 mM sodium boron hydride (NaBH4) was used for the investigations of coatings. The start concentration of iopromide solutions for the reactivity comparison of different particle batches was 2 g/ L (2.5 mmol/L). 725 mg PCE were used for the longterm reactivity column test with the particle production batch B2. Equation 1 should be replaced by the following equation:

Collaboration


Dive into the Ralf Köber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilke Würdemann

Merseburg University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Dietrich

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge