Ralf M. Schweiggert
University of Hohenheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf M. Schweiggert.
Food Chemistry | 2012
Ralf M. Schweiggert; Dominik Mezger; Franziska Schimpf; Christof B. Steingass; Reinhold Carle
Based on the observation of outstanding dissimilarities of the morphology of pigment-containing chromoplasts in nutritionally important carotenoid sources, the bioaccessibility (BA) of carotenoids from edible portions of carrot, mango, papaya, and tomato was compared using an in vitro digestion model. While carrot and tomato contained large carotenoid crystals clearly visible by light microscopy, mango and papaya contained different types of carotenoid-bearing structures. Particularly, β-carotene is deposited in globular and tubular elements in papaya and mango chromoplasts, where carotenoids accumulate in a lipid-dissolved and liquid-crystalline form, respectively. The highest BA of β-carotene was found for mango (10.1%), followed by papaya (5.3%), tomato (3.1%), and carrot (0.5%). In our digestion model, differences between total lycopene BA from papaya and tomato were insignificant, possibly since both pigments occur in a solid crystalline deposition form in both fruits. Furthermore, the BA of lutein, β-cryptoxanthin, and β-cryptoxanthin esters was shown to be superior to that of the carotenes from the respective food sources. The effect of lipid addition to the different food sources was studied. Although BA was enhanced for most carotenoids, the above-mentioned ranking of BAs of β-carotene remained unchanged after lipid addition. Consequently, the physical form of carotenoid deposition in plant chromoplasts is suggested to have major impact on their liberation efficiency from the food matrices.
Planta | 2011
Ralf M. Schweiggert; Christof B. Steingass; Annerose Heller; Patricia Esquivel; Reinhold Carle
Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC–MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.
British Journal of Nutrition | 2014
Ralf M. Schweiggert; Rachel E. Kopec; María G. Villalobos-Gutierrez; Josef Högel; Silvia Quesada; Patricia Esquivel; Steven J. Schwartz; Reinhold Carle
Carrot, tomato and papaya represent important dietary sources of β-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of β-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9·5 h after test meal consumption. The bioavailability of β-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of β-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2·6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of β-cryptoxanthin from papayas was shown to be 2·9 and 2·3 times higher than that of the other papaya carotenoids β-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of β-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable β-carotene, β-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries.
Molecular Nutrition & Food Research | 2015
Jessica L. Cooperstone; Robin A. Ralston; Kenneth M. Riedl; Thomas C. Haufe; Ralf M. Schweiggert; Samantha A. King; Cynthia Timmers; David M. Francis; Gregory B. Lesinski; Steven K. Clinton; Steven J. Schwartz
SCOPE Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. METHODS AND RESULTS Following a randomized cross-over design, subjects (n = 11, 6 M/5 F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 h and triglyceride-rich lipoprotein fractions of plasma were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (p < 0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. CONCLUSION Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods.
Critical Reviews in Food Science and Nutrition | 2015
Ralf M. Schweiggert; Reinhold Carle
ABSTRACT Over the past decades, an enormous body of literature dealing with the natural deposition of carotenoids in plant- and animal-based foods has accumulated. Prominent examples are the large solid-crystalline aggregates in carrots and tomatoes or the lipid-dissolved forms in dairy products and egg yolk. Latest research has identified lipid-dissolved forms in a rare number of plant foods, such as tangerine tomatoes and peach palm fruit (Bactris gasipaes Kunth). In addition, liquid-crystalline forms were assumed in so-called tubular chromoplasts of numerous fruits, e.g., in papaya, mango, and bell pepper. The bioavailability of carotenoids from fresh and processed foods strongly depends on their genuine deposition form, since their effective absorption to the human organism requires their liberation from the food matrix and subsequent solubilization into mixed micelles in the small intestine. Consequently, a broad overview about the natural array of carotenoid deposition forms should be helpful to better understand and modulate their bioavailability from foods. Furthermore, naturally highly bioavailable forms may provide biomimetic models for the improved formulation of carotenoids in food supplements. Therefore, this review paper presents scientific evidence from human intervention studies associating carotenoid deposition forms with their bioavailability, thus suggesting novel technological and dietary strategies for their enhanced absorption.
Journal of Agricultural and Food Chemistry | 2015
Julian K. Aschoff; Sabrina Kaufmann; Onur Kalkan; Sybille Neidhart; Reinhold Carle; Ralf M. Schweiggert
Carotenoid, flavonoid, and vitamin C concentrations were determined in fresh orange segments and a puree-like homogenate derived thereof, as well as freshly squeezed, flash-pasteurized, and pasteurized juices. Lutein and β-cryptoxanthin were slightly degraded during dejuicing, whereas β-carotene levels were retained. Vitamin C levels remained unaffected, whereas flavonoid levels decreased 8-fold upon juice extraction, most likely due to the removal of flavonoid-rich albedo and juice vesicles. Likewise, the presence of such fibrous matrix compounds during in vitro digestion was assumed to significantly lower the total bioaccessibility (BA) of all carotenoids from fresh fruit segments (12%) as compared to juices (29-30%). Mechanical disruption of orange segments prior to digestion did not alter carotenoid BA, whereas pasteurization of the freshly squeezed juice slightly increased BA by 9-11%. In addition to carotenoid BA, the stabilities of hesperidin, narirutin, and vitamin C including dehydroascorbic acid during in vitro digestion were monitored, and applied analytical methods were briefly validated.
Journal of Agricultural and Food Chemistry | 2012
Ralf M. Schweiggert; Christof B. Steingass; Patricia Esquivel; Reinhold Carle
Papaya (Carica papaya L.) F1 hybrids and inbred lines grown in Costa Rica were screened for morphological and nutritionally relevant fruit traits. The qualitative composition of carotenoids showed great similarity, being mostly composed of free and esterified β-cryptoxanthins accompanied by β-carotene, lycopene, and biosynthetic precursors. High levels of (all-E)-lycopene and its isomers were distinctive for red-fleshed hybrids, whereas yellow-fleshed fruits were virtually devoid of lycopenes. Because carotenoid levels among the investigated hybrids and lines differed significantly, this study supports the hypothesis of an exploitable genetic variability, and a potential heterotic effect regarding carotenoid expression may be instrumental in papaya-breeding programs. Due to significantly higher levels of provitamin A carotenoids and coinciding high levels of total lycopene, particularly red-fleshed hybrids might represent prospective sources of these compounds. Furthermore, the nutritional value of some genotypes was boosted by substantial amounts of ascorbic acid (up to 73 mg/100 g of fresh weight), which correlated to total soluble solids (R(2) = 0.86).
Journal of Nutrition | 2014
Rachel E. Kopec; Jessica L. Cooperstone; Ralf M. Schweiggert; Gregory S. Young; Earl H. Harrison; David M. Francis; Steven K. Clinton; Steven J. Schwartz
Dietary lipids have been shown to increase bioavailability of provitamin A carotenoids from a single meal, but the effects of dietary lipids on conversion to vitamin A during absorption are essentially unknown. Based on previous animal studies, we hypothesized that the consumption of provitamin A carotenoids with dietary lipid would enhance conversion to vitamin A during absorption compared with the consumption of provitamin A carotenoids alone. Two separate sets of 12 healthy men and women were recruited for 2 randomized, 2-way crossover studies. One meal was served with fresh avocado (Persea americana Mill), cultivated variety Hass (delivering 23 g of lipid), and a second meal was served without avocado. In study 1, the source of provitamin A carotenoids was a tomato sauce made from a novel, high–β-carotene variety of tomatoes (delivering 33.7 mg of β-carotene). In study 2, the source of provitamin A carotenoids was raw carrots (delivering 27.3 mg of β-carotene and 18.7 mg of α-carotene). Postprandial blood samples were taken over 12 h, and provitamin A carotenoids and vitamin A were quantified in triglyceride-rich lipoprotein fractions to determine baseline-corrected area under the concentration-vs.-time curve. Consumption of lipid-rich avocado enhanced the absorption of β-carotene from study 1 by 2.4-fold (P < 0.0001). In study 2, the absorption of β-carotene and α-carotene increased by 6.6- and 4.8-fold, respectively (P < 0.0001 for both). Most notably, consumption of avocado enhanced the efficiency of conversion to vitamin A (as measured by retinyl esters) by 4.6-fold in study 1 (P < 0.0001) and 12.6-fold in study 2 (P = 0.0013). These observations highlight the importance of provitamin A carotenoid consumption with a lipid-rich food such as avocado for maximum absorption and conversion to vitamin A, especially in populations in which vitamin A deficiency is prevalent. This trial was registered at clinicaltrials.gov as NCT01432210.
Journal of Agricultural and Food Chemistry | 2015
Jochen U. Ziegler; Sabine Wahl; Tobias Würschum; C. Friedrich H. Longin; Reinhold Carle; Ralf M. Schweiggert
Concentrations of lutein and lutein esters were determined in an ample collection of 75 wheat genotypes comprising bread wheat (Triticum aestivum L.), durum (Triticum durum Desf.), spelt (Triticum spelta L.), emmer (Triticum dicoccum Schrank), and einkorn (Triticum monococcum L.) grown in five different environments. Einkorn genotypes showed the highest total amounts of lutein (4.5-7.8 μg/g dry matter), followed by durum (2.0-4.6 μg/g), spelt (0.9-2.0 μg/g), emmer (0.8-1.9 μg/g), and bread wheat (0.7-2.0 μg/g). Due to the observed highly significant genetic variance and high heritability, lutein contents of wheat genotypes may be increased by future plant breeding. Detailed HPLC-DAD-APCI(±)-MS(n) data allowing the identification of six lutein monoesters and nine diesters are presented. Linoleic, palmitic, and oleic acids were the most abundant fatty acids in both the lutein esters and total free lipid fractions. Lutein esters were virtually absent in the tetraploid durum and emmer species, whereas their concentrations considerably differed among the genotypes belonging to the other species.
Molecular Nutrition & Food Research | 2015
Julian K. Aschoff; Christa L. Rolke; Nicolle Breusing; Anja Bosy-Westphal; Josef Högel; Reinhold Carle; Ralf M. Schweiggert
SCOPE Orange fruits and products thereof represent important dietary sources of carotenoids, particularly β-cryptoxanthin. Since previous studies reported a positive effect of vegetable processing on carotenoid absorption, our objective was to compare the bioavailability of β-cryptoxanthin from either fresh navel oranges (Citrus sinensis L. Osbeck) or pasteurized orange juice. METHODS AND RESULTS The study was designed as a randomized 2-way cross-over study. Twelve volunteers consumed two meals delivering 744 μg of β-cryptoxanthin from either fresh navel oranges or pasteurized orange juice. Eight blood samples were collected over 9.5 h after test meal consumption and analyzed using HPLC-DAD. Additionally, carotenoid bioaccessibility was assessed after in vitro digestion of the same test foods. β-cryptoxanthin bioavailability from pasteurized orange juice was 1.8-fold higher than from fresh oranges (P = 0.011). Similarly, mean absorption of the non-dose adjusted carotenoids lutein (P = 0.301), zeaxanthin (P = 0.216), and zeinoxanthin (P = 0.090) were slightly higher from orange juice, although not reaching statistical significance. The in vitro digestion revealed a 5.3-fold higher bioaccessibility of β-cryptoxanthin from orange juice. Dietary fiber contents in the test foods were inversely associated with carotenoid bioavailability. CONCLUSION Orange juice represents a more bioavailable source of β-cryptoxanthin than fresh oranges.