Ralf Salzer
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Salzer.
eLife | 2015
Vicki A. M. Gold; Ralf Salzer; Beate Averhoff; Werner Kühlbrandt
Proteins of the secretin family form large macromolecular complexes, which assemble in the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P molecular machine in the open and the closed state. Comparison reveals a major conformational change whereby the N-terminal domains of the central secretin PilQ shift by ∼30 Å, and two periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of the assembled pilus. DOI: http://dx.doi.org/10.7554/eLife.07380.001
Journal of Biological Chemistry | 2012
Janin Burkhardt; Janet Vonck; Julian D. Langer; Ralf Salzer; Beate Averhoff
Background: Secretins are key components of complex DNA and protein transport machineries. Results: An unusual secretin ααβαββα fold was identified as a ring-building motif essential for piliation but not for transformation. Conclusion: Type IV pilus structures are not essential for transformation in T. thermophilus. Significance: This is the first report of a ring-building domain of a unique secretin complex in T. thermophilus. DNA translocators of natural transformation systems are complex systems critical for the uptake of free DNA and provide a powerful mechanism for adaptation to changing environmental conditions. In natural transformation machineries, outer membrane secretins are suggested to form a multimeric pore for the uptake of external DNA. Recently, we reported on a novel structure of the DNA translocator secretin complex, PilQ, in Thermus thermophilus HB27 comprising a stable cone and cup structure and six ring structures with a large central channel. Here, we report on structural and functional analyses of a set of N-terminal PilQ deletion derivatives in T. thermophilus HB27. We identified 136 N-terminal residues exhibiting an unusual ααβαββα fold as a ring-building domain. Deletion of this domain had a dramatic effect on twitching motility, adhesion, and piliation but did not abolish natural transformation. These findings provide clear evidence that the pilus structures of T. thermophilus are not essential for natural transformation. The truncated complex was not affected in inner and outer membrane association, indicating that the 136 N-terminal residues are not essential for membrane targeting. Analyses of complex formation of the truncated PilQ monomers revealed that the region downstream of residue 136 is required for multimerization, and the region downstream of residue 207 is essential for monomer stability. Possible implications of our findings for the mechanism of DNA uptake are discussed.
Journal of Biological Chemistry | 2014
Ralf Salzer; Martin Herzberg; Dietrich H. Nies; Friederike Joos; Barbara Rathmann; Yvonne Thielmann; Beate Averhoff
Background: Thermus PilF is essential for pilus biogenesis and transformation. Results: Zinc binding is essential for PilF complex stability, piliation, adhesion, and twitching motility. Conclusion: PilF complex thermostability is essential for piliation but not for natural transformation. Significance: This work highlights the role of zinc and ATP in AAA-ATPase stability and provides evidence that T4P and the DNA translocator are distinct systems. The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.
Applied and Environmental Microbiology | 2014
Ralf Salzer; Friederike Joos; Beate Averhoff
ABSTRACT Natural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species. Thermus thermophilus HB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whether T. thermophilus has any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that in T. thermophilus, T4P and natural transformation are linked but distinct systems.
Environmental Microbiology | 2016
Ralf Salzer; Timo Kern; Friederike Joos; Beate Averhoff
Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.
Fems Microbiology Letters | 2014
Ralf Salzer; Timo Kern; Friederike Joos; Beate Averhoff
The thermophilic bacterium Thermus thermophilus HB27 is known for its highly efficient natural transformation system, which has become a model system to study the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter is functionally linked to type IV pili (T4P), which are essential for twitching motility and adhesion to solid surfaces. However, the pilus structures themselves are dispensable for natural transformation. Here, we report that the cellular mRNA levels of the major structural subunit of the T4P, PilA4, are regulated by environmental factors. Growth of T. thermophilus in minimal medium or low temperature (55 °C) leads to a significant increase in pilA4 transcripts. In contrast, the transcript levels of the minor pilin pilA1 as well as other T4P genes are nearly unaffected. The elevated pilA4 mRNA levels are accompanied by an increase in piliation of the cells but not by elevated natural transformation frequencies. Hyperpiliation leads to increased adhesion to plastic surfaces. The increased cell-surface interactions are suggested to represent an adaptive response to temperature stress and may be advantageous for survival of T. thermophilus.
Journal of Biological Chemistry | 2016
Ralf Salzer; Edoardo D'Imprima; Vicki A. M. Gold; Ilona Rose; Moritz Drechsler; Janet Vonck; Beate Averhoff
Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique βββαβ fold is essential for the formation of gate 2. Furthermore, we identified four βαββα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.
Extremophiles | 2015
Ralf Salzer; Friederike Joos; Beate Averhoff
The thermophilic bacterium Thermus thermophilus is known for its high natural competence. Uptake of DNA is mediated by a DNA translocator that shares components with type IV pili. Localization and function of type IV pili in other bacteria depend on the cellular localization at the poles of the bacterium, a process that involves MglA and MglB. T. thermophilus contains homologs of MglA and MglB. The genes encoding MglA and MglB were deleted and the physiology of the mutants was studied. Deletion of the genes individually or in tandem had no effect on pili formation but pili lost their localization at the poles. The mutants abolished pilus-mediated functions such as twitching motility and adherence but had no effect on uptake of DNA by natural competence. These data demonstrate that MglA and MglB are dispensable for natural transformation and are consistent with the hypothesis that uptake of DNA does not depend on type IV pili or their cellular localization.
Extremophiles | 2013
Ralf Salzer; Martin Herzberg; Dietrich H. Nies; Goran Biuković; Gerhard Grüber; Volker Müller; Beate Averhoff
The DNA-translocator ATPase PilF of Thermus thermophilus HB27 is a hexamer built by six identical subunits. Despite the presence of a conserved zinc-binding site in every subunit, only one zinc atom per hexamer was found. Re-examination of the zinc content of PilF purified from cells grown in complex media with different lots of yeast extract revealed six zinc atoms per hexamer. These data demonstrate that the low zinc content reported before was most likely a result of zinc depletion of the yeast extract used.
Extremophiles | 2018
Kerstin Kruse; Ralf Salzer; Friederike Joos; Beate Averhoff
The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.