Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph Schwall is active.

Publication


Featured researches published by Ralph Schwall.


Journal of Clinical Investigation | 1999

Safety and antitumor activity of recombinant soluble Apo2 ligand

Avi Ashkenazi; Roger Pai; Sharon Fong; Susan Leung; David A. Lawrence; Scot A. Marsters; Christine Blackie; Ling Chang; Amy E. McMurtrey; Andrea Hebert; Laura DeForge; Iphigenia Koumenis; Derf Lewis; Louise Harris; Jeanine Bussiere; Hartmut Koeppen; Zahra Shahrokh; Ralph Schwall

TNF and Fas ligand induce apoptosis in tumor cells; however, their severe toxicity toward normal tissues hampers their application to cancer therapy. Apo2 ligand (Apo2L, or TRAIL) is a related molecule that triggers tumor cell apoptosis. Apo2L mRNA is expressed in many tissues, suggesting that the ligand may be nontoxic to normal cells. To investigate Apo2Ls therapeutic potential, we generated in bacteria a potently active soluble version of the native human protein. Several normal cell types were resistant in vitro to apoptosis induction by Apo2L. Repeated intravenous injections of Apo2L in nonhuman primates did not cause detectable toxicity to tissues and organs examined. Apo2L exerted cytostatic or cytotoxic effects in vitro on 32 of 39 cell lines from colon, lung, breast, kidney, brain, and skin cancer. Treatment of athymic mice with Apo2L shortly after tumor xenograft injection markedly reduced tumor incidence. Apo2L treatment of mice bearing solid tumors induced tumor cell apoptosis, suppressed tumor progression, and improved survival. Apo2L cooperated synergistically with the chemotherapeutic drugs 5-fluorouracil or CPT-11, causing substantial tumor regression or complete tumor ablation. Thus, Apo2L may have potent anticancer activity without significant toxicity toward normal tissues.


Cancer Research | 2008

Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate.

Gail Lewis Phillips; Guangmin Li; Debra L. Dugger; Lisa Crocker; Kathryn Parsons; Elaine Mai; Walter A. Blattler; John M. Lambert; Ravi V. J. Chari; Robert J. Lutz; Wai Lee T. Wong; Frederic S. Jacobson; Hartmut Koeppen; Ralph Schwall; Sara R. Kenkare-Mitra; Susan D. Spencer; Mark X. Sliwkowski

HER2 is a validated target in breast cancer therapy. Two drugs are currently approved for HER2-positive breast cancer: trastuzumab (Herceptin), introduced in 1998, and lapatinib (Tykerb), in 2007. Despite these advances, some patients progress through therapy and succumb to their disease. A variation on antibody-targeted therapy is utilization of antibodies to deliver cytotoxic agents specifically to antigen-expressing tumors. We determined in vitro and in vivo efficacy, pharmacokinetics, and toxicity of trastuzumab-maytansinoid (microtubule-depolymerizing agents) conjugates using disulfide and thioether linkers. Antiproliferative effects of trastuzumab-maytansinoid conjugates were evaluated on cultured normal and tumor cells. In vivo activity was determined in mouse breast cancer models, and toxicity was assessed in rats as measured by body weight loss. Surprisingly, trastuzumab linked to DM1 through a nonreducible thioether linkage (SMCC), displayed superior activity compared with unconjugated trastuzumab or trastuzumab linked to other maytansinoids through disulfide linkers. Serum concentrations of trastuzumab-MCC-DM1 remained elevated compared with other conjugates, and toxicity in rats was negligible compared with free DM1 or trastuzumab linked to DM1 through a reducible linker. Potent activity was observed on all HER2-overexpressing tumor cells, whereas nontransformed cells and tumor cell lines with normal HER2 expression were unaffected. In addition, trastuzumab-DM1 was active on HER2-overexpressing, trastuzumab-refractory tumors. In summary, trastuzumab-DM1 shows greater activity compared with nonconjugated trastuzumab while maintaining selectivity for HER2-overexpressing tumor cells. Because trastuzumab linked to DM1 through a nonreducible linker offers improved efficacy and pharmacokinetics and reduced toxicity over the reducible disulfide linkers evaluated, trastuzumab-MCC-DM1 was selected for clinical development.


Nature Medicine | 2002

Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax

Heidi LeBlanc; David A. Lawrence; Eugene Varfolomeev; Klara Totpal; John Morlan; Peter Schow; Sharon Fong; Ralph Schwall; Dominick Sinicropi; Avi Ashkenazi

The importance of Bax for induction of tumor apoptosis through death receptors remains unclear. Here we show that Bax can be essential for death receptor–mediated apoptosis in cancer cells. Bax-deficient human colon carcinoma cells were resistant to death-receptor ligands, whereas Bax-expressing sister clones were sensitive. Bax was dispensable for apical death-receptor signaling events including caspase-8 activation, but crucial for mitochondrial changes and downstream caspase activation. Treatment of colon tumor cells deficient in DNA mismatch repair with the death-receptor ligand apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selected in vitro or in vivo for refractory subclones with Bax frameshift mutations including deletions at a novel site. Chemotherapeutic agents upregulated expression of the Apo2L/TRAIL receptor DR5 and the Bax homolog Bak in Bax−/− cells, and restored Apo2L/TRAIL sensitivity in vitro and in vivo. Thus, Bax mutation in mismatch repair–deficient tumors can cause resistance to death receptor–targeted therapy, but pre-exposure to chemotherapy rescues tumor sensitivity.


Clinical Cancer Research | 2006

A Novel One-Armed Anti-c-Met Antibody Inhibits Glioblastoma Growth In vivo

Tobias Martens; Nils-Ole Schmidt; Carmen Eckerich; Regina Fillbrandt; Mark Merchant; Ralph Schwall; Manfred Westphal; Katrin Lamszus

Purpose: Expression of the receptor tyrosine kinase c-Met and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly increased in glioblastomas, where they promote tumor proliferation, migration, invasion, and angiogenesis. We used a novel one-armed anti-c-Met antibody to inhibit glioblastoma growth in vivo. Experimental Design: U87 glioblastoma cells (c-Met and SF/HGF positive) or G55 glioblastoma cells (c-Met positive and SF/HGF negative) were used to generate intracranial orthotopic xenografts in nude mice. The one-armed 5D5 (OA-5D5) anti-c-Met antibody was infused intratumorally using osmotic minipumps. Following treatment, tumor volumes were measured and tumors were analyzed histologically for extracellular matrix (ECM) components and proteases relevant to tumor invasion. Microarray analyses were done to determine the effect of the antibody on invasion-related genes. Results: U87 tumor growth, strongly driven by SF/HGF, was inhibited >95% with OA-5D5 treatment. In contrast, G55 tumors, which are not SF/HGF driven, did not respond to OA-5D5, suggesting that the antibody can have efficacy in SF/HGF-activated tumors. In OA-5D5-treated U87 tumors, cell proliferation was reduced >75%, microvessel density was reduced >90%, and apoptosis was increased >60%. Furthermore, OA-5D5 treatment decreased tumor cell density >2-fold, with a consequent increase in ECM deposition and increased immunoreactivity for laminin, fibronectin, and tenascin. Microarray studies showed no incresae in these ECM factors, rather down-regulation of urokinase-type plasminogen activator and matrix metalloproteinase 16 in glioblastoma cells treated with OA-5D5. Conclusions: Local treatment with OA-5D5 can almost completely inhibit intracerebral glioblastoma growth when SF/HGF is driving tumor growth. The mechanisms of tumor inhibition include antiproliferative, antiangiogenic, and proapoptotic effects.


American Journal of Pathology | 2001

Hepatocyte Growth Factor Enhances Vascular Endothelial Growth Factor-Induced Angiogenesis in Vitro and in Vivo

Xiaohua Xin; Suya Yang; Gladys Ingle; Constance Zlot; Linda Rangell; Joe Kowalski; Ralph Schwall; Napoleone Ferrara; Mary E. Gerritsen

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis in both physiological and pathological processes. Hepatocyte growth factor (HGF) is a mesenchyme-derived mitogen that also stimulates cell migration, and branching and/or tubular morphogenesis of epithelial and endothelial cells. In the present study, we tested the hypothesis that simultaneous administration of HGF and VEGF would synergistically promote new blood vessel formation. HGF acted in concert with VEGF to promote human endothelial cell survival and tubulogenesis in 3-D type I collagen gels, a response that did not occur with either growth factor alone. The synergistic effects of VEGF and HGF on endothelial survival correlated with greatly augmented mRNA levels for the anti-apoptotic genes Bcl-2 and A1. Co-culture experiments with human neonatal dermal fibroblasts and human umbilical vein endothelial cells demonstrated that neonatal dermal fibroblasts, in combination with VEGF, stimulated human umbilical vein endothelial cells tubulogenesis through the paracrine secretion of HGF. Finally, in vivo experiments demonstrated that the combination of HGF and VEGF increased neovascularization in the rat corneal assay greater than either growth factor alone. We suggest that combination therapy using HGF and VEGF co-administration may provide a more effective strategy to achieve therapeutic angiogenesis.


Cancer Research | 2006

Somatic Mutations Lead to an Oncogenic Deletion of Met in Lung Cancer

Monica Kong-Beltran; Somasekar Seshagiri; Jiping Zha; Wenjing Zhu; Kaumudi Bhawe; Nerissa Mendoza; Thomas Holcomb; Kanan Pujara; Jeremy Stinson; Ling Fu; Christophe Severin; Linda Rangell; Ralph Schwall; Lukas C. Amler; Dineli Wickramasinghe; Robert L. Yauch

Activating mutations in receptor tyrosine kinases play a critical role in oncogenesis. Despite evidence that Met kinase is deregulated in human cancer, the role of activating mutations in cancers other than renal papillary carcinoma has not been well defined. Here we report the identification of somatic intronic mutations of Met kinase that lead to an alternatively spliced transcript in lung cancer, which encodes a deletion of the juxtamembrane domain resulting in the loss of Cbl E3-ligase binding. The mutant receptor exhibits decreased ubiquitination and delayed down-regulation correlating with elevated, distinct Met expression in primary tumors harboring the deleted receptor. As a consequence, phospho-Met and downstream mitogen-activated protein kinase activation is sustained on ligand stimulation. Cells expressing the Met deletion reveal enhanced ligand-mediated proliferation and significant in vivo tumor growth. A hepatocyte growth factor competitive Met antagonist inhibits receptor activation and proliferation in tumor cells harboring the Met deletion, suggesting the important role played by ligand-dependent Met activation and the potential for anticancer therapy. These results support a critical role for Met in lung cancer and somatic mutation-driven splicing of an oncogene that leads to a different mechanism for tyrosine kinase activation through altered receptor down-regulation in human cancer.


Cancer Research | 2008

MetMAb, the One-Armed 5D5 Anti-c-Met Antibody, Inhibits Orthotopic Pancreatic Tumor Growth and Improves Survival

Hongkui Jin; Renhui Yang; Zhong Zheng; Mally Romero; Jed Ross; Hani Bou-Reslan; Richard A. D. Carano; Ian Kasman; Elaine Mai; Judy Young; Jiping Zha; Zemin Zhang; Sarajane Ross; Ralph Schwall; Gail Colbern; Mark Merchant

The hepatocyte growth factor (HGF) and its receptor, c-Met, have been implicated in driving proliferation, invasion, and poor prognosis in pancreatic cancer. Here, we investigated the expression of HGF and c-Met in primary pancreatic cancers and described in vitro and in vivo models in which MetMAb, a monovalent antibody against c-Met, was evaluated. First, expression of HGF and MET mRNA was analyzed in 59 primary pancreatic cancers and 51 normal samples, showing that both factors are highly expressed in pancreatic cancer. We next examined HGF responsiveness in pancreatic cancer lines to select lines that proliferate in response to HGF. Based on these studies, two lines were selected for further in vivo model development: BxPC-3 (c-Met(+), HGF(-)) and KP4 (c-Met(+), HGF(+)) cells. As BxPC-3 cells are responsive to exogenous HGF, s.c. tumor xenografts were grown in a paracrine manner with purified human HGF provided by osmotic pumps, wherein MetMAb treatment significantly inhibited tumor growth. KP4 cells are autocrine for HGF and c-Met, and MetMAb strongly inhibited s.c. tumor growth. To better model pancreatic cancer and to enable long-term survival studies, an orthotopic model of KP4 was established. MetMAb significantly inhibited orthotopic KP4 tumor growth in 4-week studies monitored by ultrasound and also improved survival in 90-day studies. MetMAb significantly reduced c-Met phosphorylation in orthotopic KP4 tumors with a concomitant decrease in Ki-67 staining. These data suggest that the HGF/c-Met axis plays an important role in the progression of pancreatic cancer and that targeting c-Met therein may have therapeutic value.


Nature Medicine | 2000

Sustained survival of human hepatocytes in mice: A model for in vivo infection with human hepatitis B and hepatitis delta viruses

Kazuo Ohashi; Patricia L. Marion; Hiroyuki Nakai; Leonard Meuse; John M. Cullen; Bruno B. Bordier; Ralph Schwall; Harry B. Greenberg; Jeffrey S. Glenn; Mark A. Kay

Persistence of hepatocytes transplanted into the same or related species has been established. The long-term engraftment of human hepatocytes into rodents would be useful for the study of human viral hepatitis, where it might allow the species, technical and size limitations of the current animal models to be overcome. Although transgenic mice expressing the hepatitis B virus (HBV) genome produce infectious virus in their serum, the viral life cycle is not complete, in that the early stages of viral binding and entry into hepatocytes and production of an episomal transcriptional DNA template do not occur. As for hepatitis delta virus (HDV), another cause of liver disease, no effective therapy exists to eradicate infection, and it remains resistant even to recent regimens that have considerably changed the treatment of HBV (ref. 13). Here, we demonstrate long-term engraftment of primary human hepatocytes transplanted in a matrix under the kidney capsule of mice with administration of an agonistic antibody against c-Met. These mice were susceptible to HBV infection and completion of the viral life cycle. In addition, we demonstrate super-infection of the HBV-infected mice with HDV. Our results describe a new xenotransplant model that allows study of multiple aspects of human hepatitis viral infections, and may enhance studies of human liver diseases.


Cancer Research | 2007

Imaging Tumors with an Albumin-Binding Fab, a Novel Tumor-Targeting Agent

Mark S. Dennis; Hongkui Jin; Debra L. Dugger; Renhui Yang; Leanne McFarland; Annie Ogasawara; Simon C. Williams; Mary J. Cole; Sarajane Ross; Ralph Schwall

Association with albumin as a means to improve biodistribution and tumor deposition of a Fab was investigated using AB.Fab4D5, a bifunctional molecule derived from trastuzumab (HERCEPTIN) capable of binding albumin and tumor antigen HER2 (erbB2) simultaneously. AB.Fab4D5 was compared with trastuzumab and a trastuzumab-derived Fab (Fab4D5) for the ability to target tumors overexpressing HER2 in mouse mammary tumor virus/HER2 allograft models. Biodistribution was monitored using intravital microscopy, histology, and integrated single-photon emission computed tomography/computed tomography analysis. Fab4D5 tumor deposition was characterized by rapid but transient appearance in tumor at 2 h with little retention, followed by rapid accumulation in kidney by 6 h. Trastuzumab was slow to accumulate in tumors and slow to clear from normal tissues, although significant tumor deposition was achieved by 24 h. In contrast, AB.Fab4D5 was observed at 2 h in tumor and its presence was sustained beyond 24 h similar to trastuzumab. Intravital microscopy revealed that at peak tumor accumulation, tumor cell staining by AB.Fab4D5 was more uniform than for Fab4D5 or trastuzumab. Similar tumor deposition was achieved for both AB.Fab4D5 and trastuzumab at 48 h (35.9 +/- 1.8% and 38.2 +/- 3.1% injected dose/g); however, AB.Fab4D5 targeted tumors more rapidly and quickly cleared from blood, leading to a lower overall normal tissue exposure. Importantly, unlike Fab4D5, AB.Fab4D5 did not accumulate in kidney, suggesting that association with albumin leads to an altered route of clearance and metabolism. Rapid targeting, excellent tumor deposition and retention, coupled with high tumor to blood ratios may make AB.Fab an exceptional molecule for imaging and cancer therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent

Mark Merchant; Xiaolei Ma; Henry R. Maun; Zhong Zheng; Jing Peng; Mally Romero; Arthur Huang; Nai Ying Yang; Merry Nishimura; Joan M. Greve; Lydia Santell; Yu-Wen Zhang; Yanli Su; Dafna Kaufman; Karen Billeci; Elaine Mai; Barbara Moffat; Amy Lim; Eileen T. Duenas; Heidi S. Phillips; Hong Xiang; Judy Young; George F. Vande Woude; Mark S. Dennis; Dorothea Reilly; Ralph Schwall; Melissa A. Starovasnik; Robert A. Lazarus; Daniel G. Yansura

Significance Therapeutic antibodies have revolutionized the treatment of human disease. Despite these advances, antibody bivalency limits their utility against some targets. Here, we describe the development of a one-armed (monovalent) antibody, onartuzumab, targeting the receptor tyrosine kinase MET. While initial screening of bivalent antibodies produced agonists of MET, engineering them into monovalent antibodies produced antagonists instead. We explain the structural basis of the mechanism of action with the crystal structure of onartuzumab antigen-binding fragment in complex with MET and HGF-β. These discoveries have led to an additional antibody-based therapeutic option and shed light on the underpinnings of HGF/MET signaling. Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.

Collaboration


Dive into the Ralph Schwall's collaboration.

Researchain Logo
Decentralizing Knowledge