Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramalingam Radhakrishnan is active.

Publication


Featured researches published by Ramalingam Radhakrishnan.


Acta Physiologiae Plantarum | 2013

Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds

Ramalingam Radhakrishnan; In-Jung Lee

Deficiency of water in soil is one of the severe threats to reduce the crop yield. Development of resistant plants against water deficiency has been major research in sustainable agriculture. Application of polyamines is a recent approach to increase the plants acclimation to osmotic stress. This study was conducted to determine the ameliorative role of spermine (Spm) in reproductive phase of soybean during polyethylene glycol (PEG)-induced osmotic stress condition. Osmotic stress reduced the fresh weight of pods and seeds as well as protein contents; whereas exogenous application of Spm induced the enhancement of pods and seeds fresh weight and protein contents in osmotic stress condition. Nonetheless, the lipid peroxidation was higher in osmotic stress affected pods than their controls. Exogenous application of Spm alleviated the stress effects by the reduction of lipid peroxidation and significant elevation of total polyphenol, enzyme activities such as catalase and superoxide dismutase. Endogenous abscisic acid was higher in pods collected from PEG treatment. Moreover, the exposure of Spm inhibited the abscisic acid synthesis in osmotic-stressed pods. Hence, the present study suggests that external application of Spm would improve the plant reproductive health under osmotic stress condition.


Journal of Plant Interactions | 2014

Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease

Ramalingam Radhakrishnan; Sang-Mo Kang; In-Youl Baek; In-Jung Lee

This study investigated the plant growth promotion and stress mitigation effects of Penicillium species RDA01, NICS01, and DFC01 on sesame (Sesamum indicum L.) plants. The fungal isolates NICS01 and DFC01 significantly enhanced shoot length, root length, and fresh and dry seedling weight, due to the secretion of various concentrations of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, and Arg). Penicillium sp. NICS01 increased the amount of chlorophylls, proteins, amino acids, and lignans in the sesame plants more so than in controls. Sesame plant growth was stunted by high soil salinity, and application of the three fungal isolates increased plant survival. The RDA01 and NICS01 strains significantly increased shoot length and fresh and dry seedling weights under salt stress conditions. In addition, an in vitro study of the Penicillium spp. revealed their antagonistic activity toward the pathogenic fungi Fusarium spp. Fusarium spp. reduce shoot length; co-inoculation with the NICS01 or DFC01 isolates significantly increased shoot length in infected plants. Our results suggest that exogenous application of the Penicillium sp. NICS01 can act as a biofertilizer and a biocontrol agent to improve plant growth and enhance plant survival against salt stress and Fusarium infection.


Indian Journal of Microbiology | 2015

IAA Producing Enterobacter sp. I-3 as a Potent Bio-herbicide Candidate for Weed Control: A Special Reference with Lettuce Growth Inhibition.

Jae-Man Park; Ramalingam Radhakrishnan; Sang-Mo Kang; In-Jung Lee

AbstractDevelopment of bio-herbicides is an emerging method to weed management in agricultural field. Very few studies were conducted on identification of microbial bio-herbicides to weed control. The present study was aimed to isolate and identify the effective bio-herbicide potential bacterium from soil and assess their role on plant growth inhibition. Three-hundred and one rhizobacteria were isolated from agriculture field soil samples collected from various parts of Republic of Korea. Two bacterial strains, I-4-5 and I-3 were significantly reduced the seedling growth of radish when compared to their controls. The highest rate of seedling growth inhibition was observed in I-3 bacterial isolate treatment in lettuce and radish. The mechanism of an effective bio-herbicide I-3 to plant growth inhibition was determined by analyzing IAA in their culture medium. IAA biosynthesis pathway of Enterobacter sp. I-3 was identified as tryptophan-dependent pathway and its production was increased due to addition of tryptophan in culture medium as quantified by using GC–MS SIM. In an in vitro study revealed that I-3 bacterial culture exudate combined with tryptophan significantly decreased leaf length, leaf width, root length and increased the number of lateral roots of lettuce. Indeed, the genomic DNA of I-3 bacterium was isolated and 16S rDNA was sequenced to find out the name of the bacterium. Based on phylogenetic analysis, I-3 isolate was identified and named into Enterobacter sp. I-3. The results of this study suggest that the utilization of Enterobacter sp. I-3 to crop field can be act as a potential bio-herbicide against weed growth.


Journal of Microbiology | 2013

Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants

Ramalingam Radhakrishnan; Abdul Latif Khan; In-Jung Lee

In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2012

Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus

Abdul Latif Khan; Muhammad Hamayun; Ramalingam Radhakrishnan; Muhammad Waqas; Sang-Mo Kang; Yoon-Ha Kim; Jae-Ho Shin; Yeon-Sik Choo; Jong-Guk Kim; In-Jung Lee

We investigated in this study the influence of an endophytic fungus, Paecilomyces formosus LHL10, on the thermotolerance of cucumber (Cucumis sativus) upon exposure to high (38°C) and low (8°C) temperature stresses. The results showed that endophyte-inoculated plants had significantly higher plant growth attributes under high-temperature stress. However, they were either low or insignificant in non-inoculated control and inoculated plants with 8°C treatments. Lower stress-promulgated water deficit and cellular membrane damage were observed in endophyte-treated plants after 38°C treatment than in control plants under 8°C stress. Total polyphenol, reduced glutathione, and lipid peroxidation activities were reduced in endophyte-associated plants after exposure to 38°C as compared with control and 8°C-treated plants. The concentration of saturated fatty acids (palmitic-C16:0; stearic-C18:0) was lower in endophyte-treated plants with or without low-temperature stress, but after 8°C treatment increased compared with controls. Unsaturated fatty acids (oleic-C18:1; linoleic-C18:2; linolenic-C18:3 acids) were similar at normal conditions; however, at 38°C, C18:2 and C18:3 were decreased, and C18:1 was increased in endophyte-treated plants compared with controls, while the inverse relationship was found at 8°C. Low levels of abscisic acid in P. formosus-associated plants after 38°C treatments revealed stress tolerance compared with control and 8°C-treated plants. In contrast, salicylic acid was pronounced in endophyte-treated plants after low-temperature stress as compared to other treatments. The results provide evidence that the response to P. formosus association was beneficial at normal growth temperature and had varying effects in response to temperature stress.


Acta Physiologiae Plantarum | 2013

Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress

Ramalingam Radhakrishnan; In-Jung Lee

Phytohormones and fatty acids play a significant role in developmental stages of plant growth and defense against biotic and abiotic stresses. The purpose of this study was to determine the spermidine (Spd)-induced phytohormones and fatty acids changes involve the acclimation of cucumber plants against salt stress. Plants exposed to salt stress had significant reduction in their growth. Exogenously applied Spd increased the shoot length and protein content in salt-stressed plants. The accumulation of total phenol and malondialdehyde was higher in salt-affected plants than in their controls and these detrimental effects were mitigated by Spd treatment. Moreover, salt stress caused a significant increase in salicylic acid (SA) and jasmonic acid (JA); while Spd treatment ameliorated these salt stress effects by reducing SA and JA content. The marked accumulation of total free fatty acid was observed in salt-stressed plants, while the application of Spd to salt-stressed plants reduced the total free fatty acid content. In addition, Spd inhibited the stearic acid, linoleic acid and linolenic acid in salt-stressed plants. The results of current study suggest that exogenous application of Spd-induced phytohormones and fatty acids changes would be a reason for increasing the acclimation of cucumber plants under salt stress condition.


World Journal of Microbiology & Biotechnology | 2015

Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation

Sang-Mo Kang; Ramalingam Radhakrishnan; In-Jung Lee

The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent’s protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants.


Plant Biology | 2015

Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean

Sungmin Kang; Ramalingam Radhakrishnan; Y.‐H. You; Abdul Latif Khan; Ko-Eun Lee; Jeong-Dong Lee; In-Jung Lee

This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes.


Ecotoxicology and Environmental Safety | 2015

Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements.

Seok-Min Lee; Ramalingam Radhakrishnan; Sang-Mo Kang; Jin-Hyo Kim; In-Yong Lee; Bong-Kyu Moon; Byung-Wook Yoon; In-Jung Lee

Bioherbicides from plant extracts are an effective and environmentally friendly method to prevent weed growth. The present investigation was aimed at determining the inhibitory effect of bur cucumber seed extracts (BSE) on lettuce plant growth. Bur cucumber seeds were ground with water, and two different concentrations of seed extracts (10% and 20%) were prepared and applied to lettuce plants. Decreased plant height, number of leaves, leaf length, leaf width, anProd. Type: FTPd leaf area were found in lettuce exposed to BSE as compared with controls. A significant reduction in lettuce biomass was observed in 20% BSE-treated plants due to the presence of higher amounts of phenolic content in the extracts. Moreover, a significant inhibitory chemical, 2-linoleoyl glycerol, was identified in BSE extracts. The mechanism of plant growth inhibition was assayed in lettuce proteins by 2-dimensional electrophoresis (2-DE) and the LC-MS/MS method. In total, 57 protein spots were detected in plants treated with 20% BSE and control plants. Among these, 39 proteins were down-regulated and 18 proteins were up-regulated in plants exposed to 20% BSE as compared with controls. The presence of low levels of chlorophyll a/b binding protein and oxygen-evolving enhancer protein 1 in BSE-exposed plants reduced photosynthetic pigment synthesis and might be a reason for stunted plant growth. Indeed, the plant-growth stimulating hormone gibberellin was inhibited, and synthesis of stress hormones such as abscisic acid, jasmonic acid, and salicylic acid were triggered in lettuce by the effects of BSE. Uptake of essential nutrients, Ca, Fe, Mg, K, S, and Mo, was deficient and accumulation of the toxic ions Cu, Zn, and Na was higher in BSE-treated plants. The results of this study suggest that extracts of bur cucumber seeds can be an effective eco-friendly bioherbicide for weed control that work by inhibiting mechanisms of photosynthesis and regulating phytohormones and nutritional elements.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2015

Cucumber performance is improved by inoculation with plant growth-promoting microorganisms

Sang-Mo Kang; Ramalingam Radhakrishnan; Young-Hyun You; Abdul Latif Khan; Jae-Man Park; Soek-Min Lee; In-Jung Lee

We investigated the effects of inoculation of Rhodobacter sphaeroides, Lactobacillus plantarum, and Saccharomyces cerevisiae on cucumber plant growth promotion and on the contents of plant hormones, amino acids, and mineral nutrients. We showed that treatment with all three bio-inoculants significantly increased the shoot length, root length, shoot fresh weight, shoot dry weight, and chlorophyll content, via secretion of indole acetic acid and/or organic acids. Inoculation with R. sphaeroides had more favorable effect on plant growth than did inoculation with L. plantarum or S. cerevisiae, by significantly enhancing the gibberellin and reducing the abscisic acid contents. The results of amino acid analysis revealed that inoculation with R. sphaeroides, L. plantarum, and S. cerevisiae generally increased the contents of 17 amino acids, namely, aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline. With the exception of cysteine, all these amino acids were present in higher concentrations in plants inoculated with R. sphaeroides than in control plants or in plants inoculated with L. plantarum and S. cerevisiae. Furthermore, inoculation with R. sphaeroides significantly increased the calcium, potassium, magnesium, and phosphate contents. Our results suggest that the use of R. sphaeroides, L. plantarum, and S. cerevisiae in agricultural fields can improve plant growth. Moreover, inoculation of cucumber plants with R. sphaeroides regulates plant functional metabolites, thereby promoting plant growth.

Collaboration


Dive into the Ramalingam Radhakrishnan's collaboration.

Top Co-Authors

Avatar

In-Jung Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Mo Kang

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Suk-Bok Pae

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

In-Youl Baek

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Kang-Bo Shim

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Muhammad Waqas

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Yoon-Ha Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Chung-Dong Hwang

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Jae-Man Park

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge