Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramesh Chandra Mallik is active.

Publication


Featured researches published by Ramesh Chandra Mallik.


Journal of Materials Chemistry C | 2015

Tetrahedrites as thermoelectric materials: an overview

Raju Chetty; Ashoka Bali; Ramesh Chandra Mallik

Tetrahedrites are natural earth-abundant minerals consisting of environmentally-friendly elements of copper and sulphur. Recently, research has been focused on the natural and synthetic minerals of tetrahedrite materials for thermoelectric applications. The thermoelectric figure of merit zT of around unity at ∼723 K for many doped and natural tetrahedrite materials in the past 2–3 years was determined and this value is comparable to conventional p-type TE materials. In this review, a brief history of tetrahedrite materials is followed by information about its crystal structure and chemical bonding, electronic band structure and transport properties. Different synthesis approaches have been summarized. Also, this review outlines the effect of different doping elements on the thermoelectric properties of tetrahedrite materials, and the natural mineral tetrahedrite that can be used as thermoelectric materials.


Journal of Applied Physics | 2012

Thermoelectric properties of indium filled and germanium doped Co4Sb12 skutterudites

Ramesh Chandra Mallik; E. Mueller; Il-Ho Kim

In-filled and Ge-doped Co4Sb12 skutterudites materials were synthesized by an induction melting process which was followed by annealing at 650 degrees C for 7 days. A structural, compositional, and morphological study was carried out by X-ray diffraction (XRD), electron probe micro analysis (EPMA), and scanning electron microscopy (SEM). The formation of a single skutterudite phase (delta-CoSb3) was confirmed by XRD and the composition of all the samples was verified by EPMA. The homogeneity and morphology of the samples was observed by potential Seebeck microprobe (PSM) and SEM, respectively. The PSM result confirmed the inhomogeneity of the samples. The temperature dependence of the Seebeck coefficient, electrical conductivity, and thermal conductivity were measured in the temperature range of 300-650 K. The samples of In0.16Co4Sb12-xGex (x = 0.05, 0.1, and 0.2) show a negative Seebeck coefficient confirming an n-type conductivity and the In0.16Co4Sb11.7Ge0.3 sample shows a positive Seebeck coefficient confirming a p-type conductivity. There was a change in the Seebeck coefficient from an n-type to a p-type at the doping concentration of x = 0.3 due to the excess Ge which increases in hole carrier concentration. Electrical conductivity decreases with an increase in Ge doping concentrations and with increases in temperature due to the bipolar effect. Thermal conductivity increases with an increase in carrier concentration and decreases when the temperature is increased. The highest ZT = 0.58 was achieved by In0.16Co4 Sb11.95Ge0.05 at 673K and In-filled and Ge-doped Co4Sb12 was not effective in improving the figure of merit


Journal of Applied Physics | 2013

Thermoelectric properties of PbTe with encapsulated bismuth secondary phase

Ashoka Bali; E. Royanian; E. Bauer; P. Rogl; Ramesh Chandra Mallik

Lead Telluride (PbTe) with bismuth secondary phase embedded in the bulk has been prepared by matrix encapsulation technique. X-Ray Diffraction results indicated crystalline PbTe, while Rietveld analysis showed that Bi did not substitute at either Pb or Te site, which was further confirmed by Raman and X-Ray Photoelectron Spectroscopy. Scanning Electron Microscopy showed the expected presence of a secondary phase, while Energy Dispersive Spectroscopy results showed a slight deficiency of tellurium in the PbTe matrix, which might have occurred during synthesis due to higher vapor pressure of Te. Transmission Electron Microscopy results did not show any nanometer sized Bi phase. Seebeck coefficient (S) and electrical conductivity (sigma) were measured from room temperature to 725 K. A decrease in S and sigma with increasing Bi content showed an increased scattering of electrons from PbTe-Bi interfaces, along with a possible electron acceptor role of Bi secondary phase. An overall decrease in the power factor was thus observed. Thermal conductivity, measured from 400K to 725K, was smaller at starting temperature with increasing Bi concentration, and almost comparable to that of PbTe at higher temperatures, indicating a more important role of electrons as compared to phonons at PbTe-Bi interfaces. Still, a reasonable zT of 0.8 at 725K was achieved for undoped PbTe, but no improvement was found for bismuth added samples with micrometer inclusions


Journal of Applied Physics | 2014

Thermoelectric properties of indium doped PbTe1-ySey alloys

Ashoka Bali; Heng Wang; G. Jeffrey Snyder; Ramesh Chandra Mallik

Lead telluride and its alloys are well known for their thermoelectric applications. Here, a systematic study of PbTe1-ySey alloys doped with indium has been done. The powder X-Ray diffraction combined with Rietveld analysis confirmed the polycrystalline single phase nature of the samples, while microstructural analysis with scanning electron microscope results showed densification of samples and presence of micrometer sized particles. The temperature dependent transport properties showed that in these alloys, indium neither pinned the Fermi level as it does in PbTe, nor acted as a resonant dopant as in SnTe. At high temperatures, bipolar effect was observed which restricted the zT to 0.66 at 800 K for the sample with 30% Se content.


Journal of Materials Chemistry C | 2016

A synergistic combination of atomic scale structural engineering and panoscopic approach in p-type ZrCoSb-based half-Heusler thermoelectric materials for achieving high ZT

N. S. Chauhan; A. Bhardwaj; T. D. Senguttuvan; R. P. Pant; Ramesh Chandra Mallik; D. K. Misra

Developing thermoelectric materials with high ZT revolves around various processing techniques, such as doping, substitution chemistry, and band structure engineering near the Fermi level due to embedded nanoscale precipitates and/or quantum dots, and more recently introduced compositionally alloyed hierarchically organized microstructures. In this work, we have extended atomic scale structural engineering combined with an overarching panoscopic approach enabling the development of hierarchically organized microstructures at multiple length scales to Hf-free p-type half-Heusler thermoelectric materials for the first time. A series of compositions ZrCo1+xSb0.9Sn0.1 have been synthesized employing a fast processing technique of arc melting followed by conventional hot pressing revealing composites of half-Heusler (HH) and full-Heusler (FH) at multiple length scales. Such microstructural modifications at various length scales lead to controlled tuning of the hole density, effective mass and band engineering. Interestingly, a simultaneous large enhancement of the power factor (72% >) and a reduction in thermal conductivity (30% >) of the resulting ZrCo1+xSb0.9Sn0.1 composites were observed. The enhancement in the power factor was primarily due to the increased Seebeck coefficient which resulted from a reduction in the effective hole carrier density via low energy electron filtering coupled with an increase in the hole carriers effective mass (m*) due to band off-set minimization. The reduction in thermal conductivity can be ascribed to the enhanced phonon scattering by different frequency heat-carrying phonons due to various grain sizes at multiple length scales, such unique specific design strategies of materials described here result in superior thermoelectric properties which have been compared with several state-of-the-art p-type half Heusler materials. The Bergman-Fel model is used to calculate the effective thermoelectric parameters of these composites for comparing the experimental results.


Journal of Applied Physics | 2016

Thermoelectric properties of In and I doped PbTe

Ashoka Bali; Raju Chetty; Amit Sharma; G. Rogl; P. Heinrich; Satyam Suwas; D. K. Misra; P. Rogl; E. Bauer; Ramesh Chandra Mallik

A systematic study of structural, microstructural, and thermoelectric properties of bulk PbTe doped with indium (In) alone and co-doped with both indium and iodine (I) has been done. X-ray diffraction results showed all the samples to be of single phase. Scanning electron microscopy (SEM) results revealed the particle sizes to be in the range of micrometers, while high resolution transmission electron microscopy was used to investigate distinct microstructural features such as interfaces, grain boundaries, and strain field domains. Hall measurement at 300 K revealed the carrier concentration ∼1019 cm−3 showing the degenerate nature which was further seen in the electrical resistivity of samples, which increased with rising temperature. Seebeck coefficient indicated that all samples were n–type semiconductors with electrons as the majority carriers throughout the temperature range. A maximum power factor ∼25 μW cm−1 K−2 for all In doped samples and Pb0.998In0.003Te1.000I0.003 was observed at 700 K. Doping ...


SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013 | 2014

Design and development of thermoelectric generator

D S Prem Kumar; Ishan Vardhan Mahajan; R. Anbalagan; Ramesh Chandra Mallik

In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe0.2Co3.8Sb11.5Te0.5 (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as η = 0.273 %.


RSC Advances | 2014

Improvement of electrical conductivity in Pb0.96-yMn0.04SnyTe alloys for high temperature thermoelectric applications

Ashoka Bali; Johannes de Boor; J. Dadda; E. Mueller; Ramesh Chandra Mallik

Lead–tin–telluride is a well-known thermoelectric material in the temperature range 350–750 K. Here, this alloy doped with manganese (Pb0.96−yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 μm to 10 μm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300−720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp–d orbital interaction between the Pb1−ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.


DAE SOLID STATE PHYSICS SYMPOSIUM 2016 | 2017

Raman studies of Ball mill synthesized bulk Cu2ZnSnSe4

Kunal J. Tiwari; D S Prem Kumar; Ramesh Chandra Mallik; P. Malar

Kesterite with chemical formula Cu2ZnSnSe4 (CZTSe) has been synthesized by ball milling followed by annealing and hot pressing. Mechanochemical synthesis was carried out in the presence of process control agent namely toluene under two different milling conditions. Structural and phase evolution during different stages of the synthesis was studied with X-ray diffraction (XRD) and Raman spectroscopy. Near resonant Raman spectrum was obtained by making use of laser wavelength of 488 nm to resolve the presence of secondary ZnSe which otherwise is difficult to conclude with XRD alone. Deconvoluted Raman spectrum confirmed the presence of CZTSe along with secondary phases Cu2SnSe3 (CTSe) and ZnSe. This inference was further confirmed by electron probe micro analysis (EPMA) and wavelength dispersive spectroscopy (WDS) studies.Kesterite with chemical formula Cu2ZnSnSe4 (CZTSe) has been synthesized by ball milling followed by annealing and hot pressing. Mechanochemical synthesis was carried out in the presence of process control agent namely toluene under two different milling conditions. Structural and phase evolution during different stages of the synthesis was studied with X-ray diffraction (XRD) and Raman spectroscopy. Near resonant Raman spectrum was obtained by making use of laser wavelength of 488 nm to resolve the presence of secondary ZnSe which otherwise is difficult to conclude with XRD alone. Deconvoluted Raman spectrum confirmed the presence of CZTSe along with secondary phases Cu2SnSe3 (CTSe) and ZnSe. This inference was further confirmed by electron probe micro analysis (EPMA) and wavelength dispersive spectroscopy (WDS) studies.


SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013 | 2014

High temperature XRD of Cu2.1Zn0.9SnSe4

Raju Chetty; Ramesh Chandra Mallik

Quaternary compound with chemical composition Cu2.1ZnSnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Gruneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

Collaboration


Dive into the Ramesh Chandra Mallik's collaboration.

Top Co-Authors

Avatar

Raju Chetty

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

P. Rogl

University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Ashoka Bali

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

E. Bauer

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyam Suwas

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

G. Rogl

University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Anbalagan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge