Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramesh Y. Adhikari is active.

Publication


Featured researches published by Ramesh Y. Adhikari.


Journal of the American Chemical Society | 2015

Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability

Monojit Bag; Lawrence A. Renna; Ramesh Y. Adhikari; Supravat Karak; Feng Liu; Paul M. Lahti; Thomas P. Russell; Mark T. Tuominen; D. Venkataraman

Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling.


RSC Advances | 2016

Conductivity of individual Geobacter pili

Ramesh Y. Adhikari; Nikhil S. Malvankar; Mark T. Tuominen; Derek R. Lovley

The electrically conductive pili of Geobacter species have been proposed to play an important role in long-range electron transfer to Fe(III) oxides and other cells and have potential as a sustainable source of electrically conductive materials. Surprisingly, there have been no previous reports on the actual conductivity of individual pili, probably the most important parameter for evaluating mechanistic models of electron transport and pili function. Therefore, the conductivity of individual pili of Geobacter sulfureducens was measured with a low-noise nano-electrode measurement platform along regions of the pili that appeared to be cytochrome-free. Pilus conductivity was highly dependent upon pH with conductivity estimates of 188 ± 34 mS cm−1, 51 ± 19 mS cm−1, and 37 ± 15 μS cm−1 at pH 2, 7, and 10.5, respectively. The conductivities of pili from strain Aro-5, which expresses pili in which an alanine was substituted for each of five aromatic amino acids, were significantly lower than the wild-type pili. These results, and the previous finding that stacking of aromatic amino acids increases at low pH, suggest that aromatic amino acids play a key role in pilus conductivity. The conductivity of the G. sulfurreducens pili is comparable to conducting organic polymer wires of similar diameter and several bacterial filaments of substantially different composition. These results provide important parameters that should be accommodated in future models of G. sulfurreducens pilus conductivity and suggest strategies for enhancing pilus conductivity with genetic manipulation.


Small | 2016

Synthetic Biological Protein Nanowires with High Conductivity.

Yang Tan; Ramesh Y. Adhikari; Nikhil S. Malvankar; Shuang Pi; Joy E. Ward; Trevor L. Woodard; Kelly P. Nevin; Qiangfei Xia; Mark T. Tuominen; Derek R. Lovley

Genetic modification to add tryptophan to PilA, the monomer for the electrically conductive pili of Geobacter sulfurreducens, yields conductive protein filaments 2000-fold more conductive than the wild-type pili while cutting the diameter in half to 1.5 nm.


Mbio | 2017

Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity

Yang Tan; Ramesh Y. Adhikari; Nikhil S. Malvankar; Joy E. Ward; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

ABSTRACT The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. IMPORTANCE e-pili are a remarkable electrically conductive material that can be sustainably produced without harsh chemical processes from renewable feedstocks and that contain no toxic components in the final product. Thus, e-pili offer an unprecedented potential for developing novel materials, electronic devices, and sensors for diverse applications with a new “green” technology. Increasing e-pili conductivity will even further expand their potential applications. A proven strategy is to design synthetic e-pili that contain tryptophan, an aromatic amino acid not found in previously studied e-pili. The studies reported here demonstrate that a productive alternative approach is to search more broadly in the microbial world. Surprisingly, even though G. metallireducens and G. sulfurreducens are closely related, the conductivities of their e-pili differ by more than 3 orders of magnitude. The ability to produce e-pili with high conductivity without generating a genetically modified product enhances the attractiveness of this novel electronic material. e-pili are a remarkable electrically conductive material that can be sustainably produced without harsh chemical processes from renewable feedstocks and that contain no toxic components in the final product. Thus, e-pili offer an unprecedented potential for developing novel materials, electronic devices, and sensors for diverse applications with a new “green” technology. Increasing e-pili conductivity will even further expand their potential applications. A proven strategy is to design synthetic e-pili that contain tryptophan, an aromatic amino acid not found in previously studied e-pili. The studies reported here demonstrate that a productive alternative approach is to search more broadly in the microbial world. Surprisingly, even though G. metallireducens and G. sulfurreducens are closely related, the conductivities of their e-pili differ by more than 3 orders of magnitude. The ability to produce e-pili with high conductivity without generating a genetically modified product enhances the attractiveness of this novel electronic material.


Frontiers in Microbiology | 2016

The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter

Yang Tan; Ramesh Y. Adhikari; Nikhil S. Malvankar; Joy E. Ward; Kelly P. Nevin; Trevor L. Woodard; Jessica A. Smith; Oona L. Snoeyenbos-West; Ashley E. Franks; Mark T. Tuominen; Derek R. Lovley

Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10-4 S/cm, much lower than the previously reported 5 × 10-2 S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport and that it is important to have information beyond a phylogenetic affiliation in order to make conclusions about the mechanisms by which Geobacter species are transferring electrons to extracellular electron acceptors.


The ISME Journal | 2018

Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms

David J. F. Walker; Ramesh Y. Adhikari; Dawn E. Holmes; Joy E. Ward; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

The possibility that bacteria other than Geobacter species might contain genes for electrically conductive pili (e-pili) was investigated by heterologously expressing pilin genes of interest in Geobacter sulfurreducens. Strains of G. sulfurreducens producing high current densities, which are only possible with e-pili, were obtained with pilin genes from Flexistipes sinusarabici, Calditerrivibrio nitroreducens and Desulfurivibrio alkaliphilus. The conductance of pili from these strains was comparable to native G. sulfurreducens e-pili. The e-pili derived from C. nitroreducens, and D. alkaliphilus pilin genes are the first examples of relatively long (>100 amino acids) pilin monomers assembling into e-pili. The pilin gene from Candidatus Desulfofervidus auxilii did not yield e-pili, suggesting that the hypothesis that this sulfate reducer wires itself with e-pili to methane-oxidizing archaea to enable anaerobic methane oxidation should be reevaluated. A high density of aromatic amino acids and a lack of substantial aromatic-free gaps along the length of long pilins may be important characteristics leading to e-pili. This study demonstrates a simple method to screen pilin genes from difficult-to-culture microorganisms for their potential to yield e-pili; reveals new sources for biologically based electronic materials; and suggests that a wide phylogenetic diversity of microorganisms may use e-pili for extracellular electron exchange.


Review of Scientific Instruments | 2011

Technique for high axial shielding factor performance of large-scale, thin, open-ended, cylindrical Metglas magnetic shields

S. Malkowski; Ramesh Y. Adhikari; B. Hona; C. Mattie; D. Woods; H. Yan; B. Plaster

Metglas 2705M is a low-cost commercially available, high-permeability cobalt-based magnetic alloy, provided as a 5.08-cm wide and 20.3-μm thick ribbon foil. We present an optimized construction technique for single-shell, large-scale (human-size), thin, open-ended cylindrical Metglas magnetic shields. The measured dc axial and transverse magnetic shielding factors of our 0.61-m diameter and 1.83-m long shields in the Earths magnetic field were 267 and 1500, for material thicknesses of only 122 μm (i.e., 6 foil layers). The axial shielding performance of our single-shell Metglas magnetic shields, obtained without the use of magnetic shaking techniques, is comparable to the performance of significantly thicker, multiple-shell, open-ended Metglas magnetic shields in comparable-magnitude, low-frequency applied external fields reported previously in the literature.


EPL | 2018

Effect of solvent viscosity on driven translocation of a semi-flexible chain through a nano-pore

Ramesh Y. Adhikari; Aniket Bhattacharya

We study the effect of the solvent viscosity on the translocation dynamics of a semi-flexible polymer through a nano-pore. We use Langevin dynamics (LD) simulation in two dimensions (2D) and demonstrate that at low viscosity a stiffer chain translocates through a nano-pore faster compared to a more flexible chain and that the order of this translocation time is reversed in the high-viscosity regime. Our simulation data shows a non-monotonic dependence of the mean first passage time (MFPT) on solvent viscosity resulting in a minimum in the MFPT at a particular value of the solvent viscosity. The qualitative behavior of the MFPT of the translocating chain above and below this minimum is different. We have found that the value of the solvent viscosity corresponding to this minimum in MFPT depends on chain stiffness, chain length, applied external bias, and pore radius. We provide physically motivating arguments based on the tension propagation (TP) theory of Sakaue and draw an analogy with the Kramers turnover effect for the non-monotonic dependence of MPFT on viscosity.


Physical Review E | 2016

Publisher's Note: Translocation of a semiflexible polymer through a nanopore in the presence of attractive binding particles [Phys. Rev. E 92, 032711 (2015)].

Ramesh Y. Adhikari; Aniket Bhattacharya

This corrects the article DOI: 10.1103/PhysRevE.92.032711.


IEEE Transactions on Magnetics | 2013

Overlap Technique for End-Cap Seals on Cylindrical Magnetic Shields

S. Malkowski; Ramesh Y. Adhikari; J. Boissevain; C. Daurer; B. W. Filippone; B. Hona; B. Plaster; D. Woods; H. Yan

We present results from studies of the effectiveness of an overlap technique for forming a magnetic seal across a gap at the boundary between a cylindrical magnetic shield and an end-cap. In this technique a thin foil of magnetic material overlaps the two surfaces, thereby spanning the gap across the cylinder and the end-cap, with the magnetic seal then formed by clamping the thin magnetic foil to the surfaces of the cylindrical shield and the end-cap on both sides of the gap. In studies with a prototype 31-cm diameter, 91-cm long, 0.16-cm thick cylindrical magnetic shield and flared end-cap, the magnetic shielding performance of our overlap technique is comparable to that obtained with the conventional method in which the end-cap is placed in direct lapped contact with the cylindrical shield via through bolts or screws.

Collaboration


Dive into the Ramesh Y. Adhikari's collaboration.

Top Co-Authors

Avatar

Mark T. Tuominen

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Nikhil S. Malvankar

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Joy E. Ward

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Kelly P. Nevin

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Trevor L. Woodard

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Aniket Bhattacharya

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Yang Tan

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

B. Hona

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

B. Plaster

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge