Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor L. Woodard is active.

Publication


Featured researches published by Trevor L. Woodard.


Applied and Environmental Microbiology | 2006

Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells

Gemma Reguera; Kelly P. Nevin; Julie S. Nicoll; Sean F. Covalla; Trevor L. Woodard; Derek R. Lovley

ABSTRACT Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient electron transfer through the biofilm required the presence of electrically conductive pili. These pili may represent an electronic network permeating the biofilm that can promote long-range electrical transfer in an energy-efficient manner, increasing electricity production more than 10-fold.


Mbio | 2010

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

ABSTRACT The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. IMPORTANCE Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies. Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.


Applied and Environmental Microbiology | 2011

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms

Kelly P. Nevin; Sarah A. Hensley; Ashley E. Franks; Zarath M. Summers; Jianhong Ou; Trevor L. Woodard; Oona L. Snoeyenbos-West; Derek R. Lovley

ABSTRACT Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (>80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.


PLOS ONE | 2009

Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells

Kelly P. Nevin; Byoung-Chan Kim; Richard H. Glaven; Jessica P. Johnson; Trevor L. Woodard; Barbara A. Methé; Raymond J. DiDonato; Sean F. Covalla; Ashley E. Franks; Anna Liu; Derek R. Lovley

The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 µm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.


Energy and Environmental Science | 2009

Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm

Ashley E. Franks; Kelly P. Nevin; Hongfei Jia; Mounir Izallalen; Trevor L. Woodard; Derek R. Lovley

Harvesting electricity from the environment, organic wastes, or renewable biomass with microbial fuel cells (MFCs) is an appealing strategy, but the destructive sampling required to investigate the anode-associated biofilms has hampered research designed to better understand and optimize microbe–anode interactions. Therefore, a MFC that permits real-time imaging of the anode biofilm with confocal scanning laser microscopy was developed. In this new MFC Geobacter sulfurreducens, an organism closely related to those often found on MFC anodes and capable of high current densities, produced current comparable to that previously reported with other MFC designs. G. sulfurreducens engineered to produce the fluorescent protein mcherry to facilitate real-time imaging produced current comparable to wild-type cells. Introducing C-SNARF-4, a pH-sensitive fluoroprobe, into the anode chamber revealed strong pH gradients within the anode biofilms. The pH decreased with increased proximity to the anode surface and from the exterior to the interior of biofilm pillars. Near the anode surface pH levels were as low as 6.1 compared to ca. 7 in the external medium. Various controls demonstrated that the proton accumulation was associated with current production. Dropping the pH of culture medium from 7 to 6 severely limited the growth of G. sulfurreducens. These results demonstrate that it is feasible to non-destructively monitor the activity of anode biofilms in real time and suggest that the accumulation of protons that are released from organic matter oxidation within anode biofilms can limit current production.


Applied and Environmental Microbiology | 2008

Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyi

Sarah Strycharz; Trevor L. Woodard; Jessica P. Johnson; Kelly P. Nevin; Robert A. Sanford; Frank E. Löffler; Derek R. Lovley

ABSTRACT The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at −300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination.


Environmental Microbiology Reports | 2011

Specific localization of the c‐type cytochrome OmcZ at the anode surface in current‐producing biofilms of Geobacter sulfurreducens

Kengo Inoue; Ching Leang; Ashley E. Franks; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

The outer-surface, c-type cytochrome OmcZ is essential for optimal current production with Geobacter sulfurreducens, a genetically tractable, environmentally relevant model microorganism for the production of electricity with microbial fuel cells in a diversity of environments. In order to further investigate the role of OmcZ in current production, its location was investigated with immunogold labelling. OmcZ was dispersed throughout the extracellular matrix surrounding the cells that accumulated at the bottom of the culture tubes of cells grown under standard conditions with fumarate as the electron acceptor. When G. sulfurreducens grew as a biofilm on a graphite electrode that served as an anode and the sole electron acceptor for growth, OmcZ was highly concentrated at the biofilm-electrode interface. Controls in which the biofilm was grown on the same graphite material, but with fumarate as the electron acceptor, did not have accumulations of OmcZ at the anode, corresponding with the reduced capacity for current production in fumarate-grown biofilms. The specific localization of OmcZ at the anode surface under current-producing conditions, coupled with the previously published finding that deleting the gene for OmcZ dramatically increases the resistance of electron exchange between the anode and the biofilm, suggests that OmcZ may serve as an electrochemical gate facilitating electron transfer from G. sulfurreducens biofilms to the anode surface.


Applied and Environmental Microbiology | 2005

Potential for Quantifying Expression of the Geobacteraceae Citrate Synthase Gene To Assess the Activity of Geobacteraceae in the Subsurface and on Current-Harvesting Electrodes

Dawn E. Holmes; Kelly P. Nevin; Regina A. O'Neil; Joy E. Ward; Lorrie A. Adams; Trevor L. Woodard; Helen A. Vrionis; Derek R. Lovley

ABSTRACT The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.


Bioresource Technology | 2014

Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.

Shanshan Chen; Amelia-Elena Rotaru; Fanghua Liu; Jo Philips; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.


Bioresource Technology | 2015

Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials

Zhiqiang Zhao; Yaobin Zhang; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness.

Collaboration


Dive into the Trevor L. Woodard's collaboration.

Top Co-Authors

Avatar

Kelly P. Nevin

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Dawn E. Holmes

Western New England University

View shared research outputs
Top Co-Authors

Avatar

Joy E. Ward

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Regina A. O'Neil

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Anna Liu

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Li-Ying Wang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Ramesh Y. Adhikari

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge