Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rami N. Hannoush is active.

Publication


Featured researches published by Rami N. Hannoush.


PLOS ONE | 2010

Wnt Isoform-Specific Interactions with Coreceptor Specify Inhibition or Potentiation of Signaling by LRP6 Antibodies

Yan Gong; Eric Bourhis; Cecilia Chiu; Scott Stawicki; Venita I. Dealmeida; Bob Y. Liu; Khanhky Phamluong; Tim C. Cao; Richard A. D. Carano; James A. Ernst; Mark Solloway; Bonnee Rubinfeld; Rami N. Hannoush; Yan Wu; Paul Polakis; Mike Costa

β-catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for differential regulation of signaling by Wnt isoforms during development, and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states.


Cancer Research | 2013

Pharmacological Inhibition of the Wnt Acyltransferase PORCN Prevents Growth of WNT-Driven Mammary Cancer

Kyle Proffitt; Babita Madan; Zhiyuan Ke; Vishal Pendharkar; Lijun Ding; May Ann Lee; Rami N. Hannoush; David M. Virshup

Porcupine (PORCN) is a membrane bound O-acyltransferase that is required for Wnt palmitoylation, secretion, and biologic activity. All evaluable human Wnts require PORCN for their activity, suggesting that inhibition of PORCN could be an effective treatment for cancers dependent on excess Wnt activity. In this study, we evaluated the PORCN inhibitor Wnt-C59 (C59), to determine its activity and toxicity in cultured cells and mice. C59 inhibits PORCN activity in vitro at nanomolar concentrations, as assessed by inhibition of Wnt palmitoylation, Wnt interaction with the carrier protein Wntless/WLS, Wnt secretion, and Wnt activation of β-catenin reporter activity. In mice, C59 displayed good bioavailability, as once daily oral administration was sufficient to maintain blood concentrations well above the IC(50). C59 blocked progression of mammary tumors in MMTV-WNT1 transgenic mice while downregulating Wnt/β-catenin target genes. Surprisingly, mice exhibit no apparent toxicity, such that at a therapeutically effective dose there were no pathologic changes in the gut or other tissues. These results offer preclinical proof-of-concept that inhibiting mammalian Wnts can be achieved by targeting PORCN with small-molecule inhibitors such as C59, and that this is a safe and feasible strategy in vivo.


Journal of Biological Chemistry | 2010

Reconstitution of a Frizzled8·Wnt3a·LRP6 Signaling Complex Reveals Multiple Wnt and Dkk1 Binding Sites on LRP6

Eric Bourhis; Christine Tam; Yvonne Franke; J. Fernando Bazan; James A. Ernst; Jiyoung Hwang; Mike Costa; Andrea G. Cochran; Rami N. Hannoush

Wnt/β-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/β-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD·Wnt3a·LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth β-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/β-catenin signaling by Dkk1.


Nature Chemical Biology | 2009

Inhibition of Wnt signaling by Dishevelled PDZ peptides

Yingnan Zhang; Brent A. Appleton; Christian Wiesmann; Ted Lau; Mike Costa; Rami N. Hannoush; Sachdev S. Sidhu

Dishevelled proteins are key regulators of Wnt signaling pathways that have been implicated in the progression of human cancers. We found that the binding cleft of the Dishevelled PDZ domain is more flexible than those of canonical PDZ domains and enables recognition of both C-terminal and internal peptides. These peptide ligands inhibit Wnt/beta-catenin signaling in cells, showing that Dishevelled PDZ domains are potential targets for small-molecule cancer therapeutics.


The Journal of Neuroscience | 2012

A Caspase Cascade Regulating Developmental Axon Degeneration

David J. Simon; Robby M. Weimer; Todd McLaughlin; Dara Y. Kallop; Karen Stanger; Jing Yang; Dennis D.M. O'Leary; Rami N. Hannoush; Marc Tessier-Lavigne

Axon degeneration initiated by trophic factor withdrawal shares many features with programmed cell death, but many prior studies discounted a role for caspases in this process, particularly Caspase-3. Recently, Caspase-6 was implicated based on pharmacological and knockdown evidence, and we report here that genetic deletion of Caspase-6 indeed provides partial protection from degeneration. However, we find at a biochemical level that Caspase-6 is activated effectively only by Caspase-3 but not other “upstream” caspases, prompting us to revisit the role of Caspase-3. In vitro, we show that genetic deletion of Caspase-3 is fully protective against sensory axon degeneration initiated by trophic factor withdrawal, but not injury-induced Wallerian degeneration, and we define a biochemical cascade from prosurvival Bcl2 family regulators to Caspase-9, then Caspase-3, and then Caspase-6. Only low levels of active Caspase-3 appear to be required, helping explain why its critical role has been obscured in prior studies. In vivo, Caspase-3 and Caspase-6-knockout mice show a delay in developmental pruning of retinocollicular axons, thereby implicating both Caspase-3 and Caspase-6 in axon degeneration that occurs as a part of normal development.


ACS Chemical Biology | 2009

Imaging the Lipidome: ω-Alkynyl Fatty Acids for Detection and Cellular Visualization of Lipid-Modified Proteins

Rami N. Hannoush; Natalia Arenas-Ramirez

Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.


Structure | 2011

Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6.

Eric Bourhis; Weiru Wang; Christine Tam; Jiyoung Hwang; Yingnan Zhang; Didier Spittler; Oscar W. Huang; Yan Gong; Alberto Estevez; Inna Zilberleyb; Lionel Rouge; Cecilia Chiu; Yan Wu; Mike Costa; Rami N. Hannoush; Yvonne Franke; Andrea G. Cochran

The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we report a crystal structure of LRP6 E1 bound to an antibody, revealing that the E1 domain is a peptide recognition module. Remarkably, the consensus E1 binding sequence is a close match to a conserved tripeptide motif present in all Wnt inhibitors that bind LRP5/6. We show that this motif is important for DKK1 and SOST binding to LRP6 and for inhibitory function, providing a detailed structural explanation for the effect of the BMD mutations.


Nature Chemical Biology | 2014

Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine

Xinxin Gao; Rami N. Hannoush

Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13-16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.


Journal of Molecular Biology | 2012

Engineering and Structural Characterization of a Linear Polyubiquitin-Specific Antibody

Marissa L. Matsumoto; Ken C. Dong; Christine Yu; Lilian Phu; Xinxin Gao; Rami N. Hannoush; Sarah G. Hymowitz; Donald S. Kirkpatrick; Vishva M. Dixit; Robert F. Kelley

Polyubiquitination is an essential posttranslational modification that plays critical roles in cellular signaling. PolyUb (polyubiquitin) chains are formed by linking the carboxyl-terminus of one Ub (ubiquitin) subunit to either a lysine residue or the amino-terminus of an adjacent Ub. Linkage through the amino-terminus results in linear polyubiquitination that has recently been demonstrated to be a key step in nuclear factor κB activation; however, tools to study linear chains have been lacking. We therefore engineered a linear-linkage-specific antibody that is functional in Western blot, immunoprecipitation, and immunofluorescence applications. A crystal structure of the linear-linkage-specific antibody Fab fragment in complex with linear diubiquitin provides molecular insight into the nature of linear chain specificity. We use the antibody to demonstrate that linear polyUb is up-regulated upon tumor necrosis factor α stimulation of cells, consistent with a critical role in nuclear factor κB signaling. This antibody provides an essential tool for further investigation of the function of linear chains.


Nature Chemical Biology | 2015

Regulation of the oncoprotein Smoothened by small molecules

Hayley Sharpe; Weiru Wang; Rami N. Hannoush; Frederic J. de Sauvage

The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically, many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like protein Patched and the G protein-coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO.

Collaboration


Dive into the Rami N. Hannoush's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge