Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea G. Cochran is active.

Publication


Featured researches published by Andrea G. Cochran.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Tryptophan zippers: Stable, monomeric β-hairpins

Andrea G. Cochran; Nicholas J. Skelton; Melissa A. Starovasnik

A structural motif, the tryptophan zipper (trpzip), greatly stabilizes the β-hairpin conformation in short peptides. Peptides (12 or 16 aa in length) with four different turn sequences are monomeric and fold cooperatively in water, as has been observed previously for some hairpin peptides. However, the folding free energies of the trpzips exceed substantially those of all previously reported β-hairpins and even those of some larger designed proteins. NMR structures of three of the trpzip peptides reveal exceptionally well-defined β-hairpin conformations stabilized by cross-strand pairs of indole rings. The trpzips are the smallest peptides to adopt an unique tertiary fold without requiring metal binding, unusual amino acids, or disulfide crosslinks.


Immunity | 2002

BAFF/BLyS Receptor 3 Binds the B Cell Survival Factor BAFF Ligand through a Discrete Surface Loop and Promotes Processing of NF-κB2

Nobuhiko Kayagaki; Minhong Yan; Dhaya Seshasayee; Hua Wang; Wyne P. Lee; Dorothy French; Iqbal S. Grewal; Andrea G. Cochran; Nathaniel C. Gordon; JianPing Yin; Melissa A. Starovasnik; Vishva M. Dixit

The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells. Furthermore, wild-type mice injected with BAFF-neutralizing BR3-Fc protein showed reduced basal NF-kappaB2 activation. BR3-Fc treatment of NZB/WF1 mice, which develop a fatal lupus-like syndrome, inhibited NF-kappaB2 processing and attenuated the disease process. Since inhibiting the BR3-BAFF interaction has therapeutic ramifications, the ligand binding interface of BR3 was investigated and found to reside within a 26 residue core domain. When stabilized within a structured beta-hairpin peptide, six of these residues were sufficient to confer binding to BAFF.


Chemistry & Biology | 2000

Antagonists of protein-protein interactions.

Andrea G. Cochran

Protein-protein interactions are often attractive, but not straightforward, targets for disease therapy. Two strategies for identifying inhibitors of these interactions, peptide phage display and high-throughput screening, have recently shown new promise.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Short constrained peptides that inhibit HIV-1 entry.

Samuel K. Sia; Peter A. Carr; Andrea G. Cochran; Vladimir N. Malashkevich; Peter S. Kim

Peptides corresponding to the C-terminal heptad repeat of HIV-1 gp41 (C-peptides) are potent inhibitors of HIV-1 entry into cells. Their mechanism of inhibition involves binding in a helical conformation to the central coiled coil of HIV-1 gp41 in a dominant–negative manner. Short C-peptides, however, have low binding affinity for gp41 and poor inhibitory activity, which creates an obstacle to the development of small drug-like C-peptides. To improve the inhibitory potency of short C-peptides that target the hydrophobic pocket region of gp41, we use two strategies to stabilize the C-peptide helix: chemical crosslinking and substitution with unnatural helix-favoring amino acids. In this study, the short linear peptide shows no significant inhibitory activity, but a constrained peptide (C14linkmid) inhibits cell–cell fusion at micromolar potency. Structural studies confirm that the constrained peptides bind to the gp41 hydrophobic pocket. Calorimetry reveals that, of the peptides analyzed, the most potent are those that best balance the changes in binding enthalpy and entropy, and surprisingly not those with the highest helical propensity as measured by circular dichroism spectroscopy. Our study reveals the thermodynamic basis of inhibition of an HIV C-peptide, demonstrates the utility of constraining methods for a short antiviral peptide inhibitor, and has implications for the future design of constrained peptides.


Journal of Biological Chemistry | 2010

Reconstitution of a Frizzled8·Wnt3a·LRP6 Signaling Complex Reveals Multiple Wnt and Dkk1 Binding Sites on LRP6

Eric Bourhis; Christine Tam; Yvonne Franke; J. Fernando Bazan; James A. Ernst; Jiyoung Hwang; Mike Costa; Andrea G. Cochran; Rami N. Hannoush

Wnt/β-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/β-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD·Wnt3a·LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth β-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/β-catenin signaling by Dkk1.


Structure | 2011

Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6.

Eric Bourhis; Weiru Wang; Christine Tam; Jiyoung Hwang; Yingnan Zhang; Didier Spittler; Oscar W. Huang; Yan Gong; Alberto Estevez; Inna Zilberleyb; Lionel Rouge; Cecilia Chiu; Yan Wu; Mike Costa; Rami N. Hannoush; Yvonne Franke; Andrea G. Cochran

The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we report a crystal structure of LRP6 E1 bound to an antibody, revealing that the E1 domain is a peptide recognition module. Remarkably, the consensus E1 binding sequence is a close match to a conserved tripeptide motif present in all Wnt inhibitors that bind LRP5/6. We show that this motif is important for DKK1 and SOST binding to LRP6 and for inhibitory function, providing a detailed structural explanation for the effect of the BMD mutations.


Journal of Medicinal Chemistry | 2009

A class of 2,4-bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B.

Ignacio Aliagas-Martin; Dan Burdick; Laura Corson; Jennafer Dotson; Jason Drummond; Carter Fields; Oscar W. Huang; Thomas Hunsaker; Tracy Kleinheinz; Elaine Krueger; Jun Liang; John Moffat; Gail Lewis Phillips; Rebecca Pulk; Thomas E. Rawson; Mark Ultsch; Leslie Walker; Christian Wiesmann; Birong Zhang; Bing-Yan Zhu; Andrea G. Cochran

The two major Aurora kinases carry out critical functions at distinct mitotic stages. Selective inhibitors of these kinases, as well as pan-Aurora inhibitors, show antitumor efficacy and are now under clinical investigation. However, the ATP-binding sites of Aurora A and Aurora B are virtually identical, and the structural basis for selective inhibition has therefore not been clear. We report here a class of bisanilinopyrimidine Aurora A inhibitors with excellent selectivity for Aurora A over Aurora B, both in enzymatic assays and in cellular phenotypic assays. Crystal structures of two of the inhibitors in complex with Aurora A implicate a single amino acid difference in Aurora B as responsible for poor inhibitory activity against this enzyme. Mutation of this residue in Aurora B (E161T) or Aurora A (T217E) is sufficient to swap the inhibition profile, suggesting that this difference might be exploited more generally to achieve high selectivity for Aurora A.


The EMBO Journal | 2011

Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex.

Matthew L. Bentley; Jacob E. Corn; Ken C. Dong; Qui Phung; Tommy K. Cheung; Andrea G. Cochran

The Polycomb repressive complex 1 (PRC1) mediates gene silencing, in part by monoubiquitination of histone H2A on lysine 119 (uH2A). Bmi1 and Ring1b are critical components of PRC1 that heterodimerize via their N‐terminal RING domains to form an active E3 ubiquitin ligase. We have determined the crystal structure of a complex between the Bmi1/Ring1b RING–RING heterodimer and the E2 enzyme UbcH5c and find that UbcH5c interacts with Ring1b only, in a manner fairly typical of E2–E3 interactions. However, we further show that the Bmi1/Ring1b RING domains bind directly to duplex DNA through a basic surface patch unique to the Bmi1/Ring1b RING–RING dimer. Mutation of residues on this interaction surface leads to a loss of H2A ubiquitination activity. Computational modelling of the interface between Bmi1/Ring1b–UbcH5c and the nucleosome suggests that Bmi1/Ring1b interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve specific monoubiquitination of H2A. Our results point to a novel mechanism of substrate recognition, and control of product formation, by Bmi1/Ring1b.


Nature Chemical Biology | 2016

An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells

Maia Vinogradova; Victor S. Gehling; Amy Gustafson; Shilpi Arora; Charles Tindell; Catherine Wilson; Kaylyn E. Williamson; Gulfem D. Guler; Pranoti Gangurde; Wanda Manieri; Jennifer Busby; E. Megan Flynn; Fei Lan; Hyo-Jin Kim; Shobu Odate; Andrea G. Cochran; Yichin Liu; Matthew Wongchenko; Yibin Yang; Tommy K. Cheung; Tobias M. Maile; Ted Lau; Michael Costa; Ganapati V. Hegde; Erica Jackson; Robert M. Pitti; David Arnott; Christopher M. Bailey; Steve Bellon; Richard T. Cummings

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Structure | 2015

A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications

E. Megan Flynn; Oscar W. Huang; Florence Poy; Mariano Oppikofer; Steve Bellon; Yong Tang; Andrea G. Cochran

Bromodomains are epigenetic readers that are recruited to acetyllysine residues in histone tails. Recent studies have identified non-acetyl acyllysine modifications, raising the possibility that these might be read by bromodomains. Profiling the nearly complete human bromodomain family revealed that while most human bromodomains bind only the shorter acetyl and propionyl marks, the bromodomains of BRD9, CECR2, and the second bromodomain of TAF1 also recognize the longer butyryl mark. In addition, the TAF1 second bromodomain is capable of binding crotonyl marks. None of the human bromodomains tested binds succinyl marks. We characterized structurally and biochemically the binding to different acyl groups, identifying bromodomain residues and structural attributes that contribute to specificity. These studies demonstrate a surprising degree of plasticity in some human bromodomains but no single factor controlling specificity across the family. The identification of candidate butyryl- and crotonyllysine readers supports the idea that these marks could have specific physiological functions.

Collaboration


Dive into the Andrea G. Cochran's collaboration.

Researchain Logo
Decentralizing Knowledge