Ramin Shiekhattar
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramin Shiekhattar.
Genome Research | 2012
Thomas Derrien; Rory Johnson; Giovanni Bussotti; Andrea Tanzer; Sarah Djebali; Hagen Tilgner; Gregory Guernec; David Martin; Angelika Merkel; David G. Knowles; Julien Lagarde; Lavanya Veeravalli; Xiaoan Ruan; Yijun Ruan; Timo Lassmann; Piero Carninci; James B. Brown; Leonard Lipovich; José Manuel Rodríguez González; Mark G. Thomas; Carrie A. Davis; Ramin Shiekhattar; Thomas R. Gingeras; Tim Hubbard; Cedric Notredame; Jennifer Harrow; Roderic Guigó
The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.
Nature | 2004
Richard I. Gregory; Kai Ping Yan; Govindasamy Amuthan; Thimmalah Chendrimada; Behzad Doratotaj; Neil Cooch; Ramin Shiekhattar
MicroRNAs (miRNAs) are a growing family of small non-protein-coding regulatory genes that regulate the expression of homologous target-gene transcripts. They have been implicated in the control of cell death and proliferation in flies, haematopoietic lineage differentiation in mammals, neuronal patterning in nematodes and leaf and flower development in plants. miRNAs are processed by the RNA-mediated interference machinery. Drosha is an RNase III enzyme that was recently implicated in miRNA processing. Here we show that human Drosha is a component of two multi-protein complexes. The larger complex contains multiple classes of RNA-associated proteins including RNA helicases, proteins that bind double-stranded RNA, novel heterogeneous nuclear ribonucleoproteins and the Ewings sarcoma family of proteins. The smaller complex is composed of Drosha and the double-stranded-RNA-binding protein, DGCR8, the product of a gene deleted in DiGeorge syndrome. In vivo knock-down and in vitro reconstitution studies revealed that both components of this smaller complex, termed Microprocessor, are necessary and sufficient in mediating the genesis of miRNAs from the primary miRNA transcript.
Nature | 2005
Thimmaiah P. Chendrimada; Richard I. Gregory; Easwari Kumaraswamy; Jessica Norman; Neil Cooch; Kazuko Nishikura; Ramin Shiekhattar
MicroRNAs (miRNAs) are generated by a two-step processing pathway to yield RNA molecules of approximately 22 nucleotides that negatively regulate target gene expression at the post-transcriptional level. Primary miRNAs are processed to precursor miRNAs (pre-miRNAs) by the Microprocessor complex. These pre-miRNAs are cleaved by the RNase III Dicer to generate mature miRNAs that direct the RNA-induced silencing complex (RISC) to messenger RNAs with complementary sequence. Here we show that TRBP (the human immunodeficiency virus transactivating response RNA-binding protein), which contains three double-stranded, RNA-binding domains, is an integral component of a Dicer-containing complex. Biochemical analysis of TRBP-containing complexes revealed the association of Dicer–TRBP with Argonaute 2 (Ago2), the catalytic engine of RISC. The physical association of Dicer–TRBP and Ago2 was confirmed after the isolation of the ternary complex using Flag-tagged Ago2 cell lines. In vitro reconstitution assays demonstrated that TRBP is required for the recruitment of Ago2 to the small interfering RNA (siRNA) bound by Dicer. Knockdown of TRBP results in destabilization of Dicer and a consequent loss of miRNA biogenesis. Finally, depletion of the Dicer–TRBP complex via exogenously introduced siRNAs diminished RISC-mediated reporter gene silencing. These results support a role of the Dicer–TRBP complex not only in miRNA processing but also as a platform for RISC assembly.
Cell | 2005
Richard I. Gregory; Thimmaiah P. Chendrimada; Neil Cooch; Ramin Shiekhattar
RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demonstrate that this complex can cleave target RNA using precursor microRNA (pre-miRNA) hairpin as the source of siRNA. Although RISC can also utilize duplex siRNA, it displays a nearly 10-fold greater activity using the pre-miRNA Dicer substrate. RISC distinguishes the guide strand of the siRNA from the passenger strand and specifically incorporates the guide strand. Importantly, ATP is not required for miRNA processing, RISC assembly, or multiple rounds of target-RNA cleavage. These results define the composition of RISC and demonstrate that miRNA processing and target-RNA cleavage are coupled.
Cell | 2010
Ulf Andersson Ørom; Thomas Derrien; Malte Beringer; Kiranmai Gumireddy; Alessandro Gardini; Giovanni Bussotti; Fan Lai; Matthias Zytnicki; Cedric Notredame; Qihong Huang; Roderic Guigó; Ramin Shiekhattar
While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.
Nature Structural & Molecular Biology | 2006
Weidong Yang; Thimmaiah P. Chendrimada; Qingde Wang; Miyoko Higuchi; Peter H. Seeburg; Ramin Shiekhattar; Kazuko Nishikura
Adenosine deaminases acting on RNA (ADARs) are involved in editing of adenosine residues to inosine in double-stranded RNA (dsRNA). Although this editing recodes and alters functions of several mammalian genes, its most common targets are noncoding repeat sequences, indicating the involvement of this editing system in currently unknown functions other than recoding of protein sequences. Here we show that specific adenosine residues of certain microRNA (miRNA) precursors are edited by ADAR1 and ADAR2. Editing of pri–miR-142, the precursor of miRNA-142, expressed in hematopoietic tissues, resulted in suppression of its processing by Drosha. The edited pri–miR-142 was degraded by Tudor-SN, a component of RISC and also a ribonuclease specific to inosine-containing dsRNAs. Consequently, mature miRNA-142 expression levels increased substantially in ADAR1 null or ADAR2 null mice. Our results demonstrate a new function of RNA editing in the control of miRNA biogenesis.
Nature | 2005
Min Gyu Lee; Christopher Wynder; Neil Cooch; Ramin Shiekhattar
We have previously described a multiprotein complex termed the BHC or BRAF–HDAC complex, which is required for the repression of neuronal-specific genes. We have shown that the BHC complex is recruited by a neuronal silencer, REST (RE1-silencing transcription factor), and mediates the repression of REST-responsive genes. BHC is a multiprotein complex consisting of two enzymatic activities: a histone deacetylase (HDAC1 or 2) and a recently described histone demethylase (BHC110, also known as LSD1 or AOF2). Here we show that BHC110-containing complexes show a nearly fivefold increase in demethylation of histone H3 lysine 4 (H3K4) compared to recombinant BHC110. Furthermore, recombinant BHC110 is unable to demethylate H3K4 on nucleosomes, but BHC110-containing complexes readily demethylate nucleosomes. In vitro reconstitution of the BHC complex using recombinant subunits reveals an essential role for the REST corepressor CoREST, not only in stimulating demethylation on core histones but also promoting demethylation of nucleosomal substrates. We find that nucleosomal demethylation is the result of CoREST enhancing the association between BHC110 and nucleosomes. Depletion of CoREST in in vivo cell culture results in de-repression of REST-responsive gene expression and increased methylation of H3K4. Together, these results highlight an essential role for CoREST in demethylation of H3K4 both in vitro and in vivo.
Cell | 2000
Daniel A. Bochar; Lai Wang; Hideo Beniya; Alexander V Kinev; Yutong Xue; William S. Lane; Weidong Wang; Fatah Kashanchi; Ramin Shiekhattar
Germline mutations in the tumor suppressor gene, BRCA1, predispose individuals to breast and ovarian cancers. Using a combination of affinity- and conventional chromatographic techniques, we have isolated a predominant form of a multiprotein BRCA1-containing complex from human cells displaying chromatin-remodeling activity. Mass spectrometric sequencing of components of this complex indicated that BRCA1 is associated with a SWI/SNF-related complex. We show that BRCA1 can directly interact with the BRG1 subunit of the SWI/SNF complex. Moreover, p53-mediated stimulation of transcription by BRCA1 was completely abrogated by either a dominant-negative mutant of BRG1 or the cancer-causing deletion in exon 11 of BRCA1. These findings reveal a direct function for BRCA1 in transcriptional control through modulation of chromatin structure.
Nature | 2007
Jing Huang; Roopsha Sengupta; Alexsandra Espejo; Min Gyu Lee; Jean Dorsey; Mario Richter; Susanne Opravil; Ramin Shiekhattar; Mark T. Bedford; Thomas Jenuwein; Shelley L. Berger
p53, the tumour suppressor and transcriptional activator, is regulated by numerous post-translational modifications, including lysine methylation. Histone lysine methylation has recently been shown to be reversible; however, it is not known whether non-histone proteins are substrates for demethylation. Here we show that, in human cells, the histone lysine-specific demethylase LSD1 (refs 3, 4) interacts with p53 to repress p53-mediated transcriptional activation and to inhibit the role of p53 in promoting apoptosis. We find that, in vitro, LSD1 removes both monomethylation (K370me1) and dimethylation (K370me2) at K370, a previously identified Smyd2-dependent monomethylation site. However, in vivo, LSD1 shows a strong preference to reverse K370me2, which is performed by a distinct, but unknown, methyltransferase. Our results indicate that K370me2 has a different role in regulating p53 from that of K370me1: K370me1 represses p53 function, whereas K370me2 promotes association with the coactivator 53BP1 (p53-binding protein 1) through tandem Tudor domains in 53BP1. Further, LSD1 represses p53 function through the inhibition of interaction of p53 with 53BP1. These observations show that p53 is dynamically regulated by lysine methylation and demethylation and that the methylation status at a single lysine residue confers distinct regulatory output. Lysine methylation therefore provides similar regulatory complexity for non-histone proteins and for histones.
Cancer Research | 2005
Richard I. Gregory; Ramin Shiekhattar
MicroRNAs (miRNA) are a recently discovered family of short non-protein-coding RNAs that negatively regulate gene expression. Recent studies of miRNAs highlight a requirement for cell viability. Posttranscriptional silencing of target genes by miRNAs occurs either by targeting specific cleavage of homologous mRNAs, or by targeting specific inhibition of protein synthesis. We recently identified a multisubunit protein complex termed Microprocessor that is necessary and sufficient for processing miRNA precursor RNAs. Microprocessor contains Drosha, an RNase III endonuclease, and DGCR8, a gene deleted in DiGeorge syndrome. We consider recent findings that link miRNA perturbation to cancer.