Ramiro Rojas
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramiro Rojas.
Journal of Biomaterials Applications | 2014
Nikos Schizas; Ramiro Rojas; Sujit Kootala; Brittmarie Andersson; Jennie Pettersson; Jöns Hilborn; Nils P. Hailer
Numerous biomaterials based on extracellular matrix-components have been developed. It was our aim to investigate whether a hyaluronic acid–based hydrogel improves neuronal survival and tissue preservation in organotypic spinal cord slice cultures. Organotypic spinal cord slice cultures were cultured for 4 days in vitro (div), either on hyaluronic acid–based hydrogel (hyaluronic acid–gel group), collagen gel (collagen group), directly on polyethylene terephthalate membrane inserts (control group), or in the presence of soluble hyaluronic acid (soluble hyaluronic acid group). Cultures were immunohistochemically stained against neuronal antigen NeuN and analyzed by confocal laser scanning microscopy. Histochemistry for choline acetyltransferance, glial fibrillary acidic protein, and Griffonia simplicifolia isolectin B4 followed by quantitative analysis was performed to assess motorneurons and different glial populations. Confocal microscopic analysis showed a 4-fold increase in the number of NeuN-positive neurons in the hyaluronic acid–gel group compared to both collagen (p < 0.001) and control groups (p < 0.001). Compared to controls, organotypic spinal cord slice cultures maintained on hyaluronic acid–based hydrogel showed 5.9-fold increased survival of choline acetyltransferance-positive motorneurons (p = 0.008), 2-fold more numerous resting microglial cells in the white matter (p = 0.031), and a 61.4% reduction in the number of activated microglial cells within the grey matter (p = 0.05). Hyaluronic acid–based hydrogel had a shear modulus (G′) of ≈1200 Pascals (Pa), which was considerably higher than the ≈25 Pa measured for collagen gel. Soluble hyaluronic acid failed to improve tissue preservation. In conclusion, hyaluronic acid–based hydrogel improves neuronal and – most notably – motorneuron survival in organotypic spinal cord slice cultures and microglial activation is limited. The positive effects of hyaluronic acid–based hydrogel may at least in part be due to its mechanical properties.
Chemsuschem | 2017
Yuanyuan Li; Qiliang Fu; Ramiro Rojas; Min Yan; Martin Lawoko; Lars Berglund
Abstract Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light‐transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high‐lignin‐content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK−1, and work‐tofracture of 1.2 MJ m−3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy‐saving buildings.
Journal of Physical Chemistry B | 2016
Ramiro Rojas; Albert Mihranyan
Globally, uncorrected refractive errors are one of the main causes of visual impairment, and contact lenses form an important part of modern day eye care and culture. Several hydrogels with varying physicochemical properties are in use to manufacture soft contact lenses. Hydrogels are generally too soft and reinforcement with appropriate materials is desirable to achieve high water content without compromising mechanical properties. In this study, we have developed a highly transparent macroporous hydrogel with water content >90%, by combining poly(vinyl alcohol) with nanocellulose. Furthermore, the results show that the composite hydrogel has refractive index close to that of water and very good UV-blocking properties.
Acta Biomaterialia | 2012
A. Luk; N.S. Murthy; Wenjie Wang; Ramiro Rojas; Joachim Kohn
Distribution of water in three classes of biomedically relevant and degradable polymers was investigated using small-angle neutron scattering. In semicrystalline polymers, such as poly(lactic acid) and poly(glycolic acid), water was found to diffuse preferentially into the non-crystalline regions. In amorphous polymers, such as poly(d,l-lactic acid) and poly(lactic-co-glycolic acid), the scattering after 7 days of incubation was attributed to water in microvoids that form following the hydrolytic degradation of the polymer. In amorphous copolymers containing hydrophobic segments (desaminotyrosyl-tyrosine ethyl ester) and hydrophilic blocks (poly(ethylene glycol) (PEG)), a sequence of distinct regimes of hydration were observed: homogeneous distribution (∼10Å length scales) at <13 wt.% PEG (∼1 water per EG), clusters of hydrated domains (∼50Å radius) separated at 24 wt.% PEG (1-2 water per EG), uniformly distributed hydrated domains at 41 wt.% PEG (∼4 water per EG) and phase inversion at >50 wt.% PEG (>6 water per EG). Increasing the PEG content increased the number of these domains with only a small decrease in distance between the domains. These discrete domains appeared to coalesce to form submicron droplets at ∼60°C, above the melting temperature of crystalline PEG. The significance of such observations on the evolution of micrometer-size channels that form during hydrolytic erosion is discussed.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Jinxing Huo; Ramiro Rojas; Jan Bohlin; Jöns Hilborn; E. Kristofer Gamstedt
Coupled helical coils show promising mechanical behavior to be used as tubular organ constructs, e.g., in trachea or urethra. They are potentially easy to manufacture by filament winding of biocompatible and resorbable polymers, and could be tailored for suitable mechanical properties. In this study, coupled helical coils were manufactured by filament winding of melt-extruded polycaprolactone, which was reported to demonstrate desired in vivo degradation speed matching tissue regeneration rate. The tensile and bending stiffness was characterized for a set of couple helical coils with different geometric designs, with right-handed and left-handed polymer helices fused together in joints where the filaments cross. The Youngs modulus of unidirectional polycaprolactone filaments was characterized, and used as input together with the structural parameters of the coupled coils in finite element simulations of tensile loading and three-point bending of the coils. A favorable comparison of the numerical and experimental results was found, which paves way for use of the proposed numerical approach in stiffness design under reversible elastic conditions of filament wound tubular constructs.
Journal of Materials Chemistry | 2018
Yuanyuan Li; Xuan Yang; Qiliang Fu; Ramiro Rojas; Min Yan; Lars Berglund
Transparent wood is an attractive structural material for energy-saving buildings due to its high optical transmittance, good thermal insulation, and high toughness. However, thick highly transparent wood is challenging to realize. In the current work, highly transparent wood (1.5 mm) with a transmittance of 92%, close to that of pure PMMA (95%), is demonstrated. The high transmittance was realized by interface manipulation through acetylation of wood template. Both experiments and electromagnetic modeling support that the improved transmittance is mainly due to elimination of interface debonding gap. By applying this method, a centimeter-thick transparent wood structure was obtained. The transparent wood could be used as a substrate for an optically tunable window by laminating a polymer dispersed liquid crystal (PDLC) film on top. The techniques demonstrated are a step towards the replacement of glass in smart windows and smart buildings.
Biomatter | 2016
Cecilia Persson; Alejandro López; Hoda Fathali; Andreas Hoess; Ramiro Rojas; Marjam Karlsson Ott; Jöns Hilborn; Håkan Engqvist
ABSTRACT With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness.
Polymer | 2007
J Schut; Durgadas Bolikal; I J Khan; A Pesnell; A Rege; Ramiro Rojas; L Sheihet; N.S. Murthy; Joachim Kohn
Journal of Polymer Science Part A | 2009
Ramiro Rojas; Nicole K. Harris; Karolina Piotrowska; Joachim Kohn
Tissue Engineering Part C-methods | 2013
Fatemeh Ajalloueian; Said Zeiai; Ramiro Rojas; Magdalena Fossum; Jöns Hilborn