Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramon Latorre is active.

Publication


Featured researches published by Ramon Latorre.


Current Opinion in Neurobiology | 1998

Calcium-activated potassium channels

Cecilia Vergara; Ramon Latorre; Neil V. Marrion; John P. Adelman

Calcium-activated potassium channels are fundamental regulators of neuronal excitability, participating in interspike interval and spike-frequency adaptation. For large-conductance calcium-activated potassium (BK) channels, recent experiments have illuminated the fundamental biophysical mechanisms of gating, demonstrating that BK channels are voltage gated and calcium modulated. Structurally, BK channels have been shown to possess an extracellular amino-terminal domain, different from other potassium channels. Domains and residues involved in calcium-gating, and perhaps calcium binding itself, have been identified. For small- and intermediate-conductance calcium-activated potassium channels, SK and IK channels, clones have only recently become available, and they show that SK channels are a distinct subfamily of potassium channels. The biophysical properties of SK channels demonstrate that kinetic differences between apamin-sensitive and apamin-insensitive slow afterhyperpolarizations are not attributable to intrinsic gating differences between the two subtypes. Interestingly, SK and IK channels may prove effective drug targets for diseases such as myotonic muscular dystrophy and sickle cell anemia.


The Journal of Neuroscience | 2006

A Hot-Sensing Cold Receptor: C-Terminal Domain Determines Thermosensation in Transient Receptor Potential Channels

Sebastian Brauchi; Gerardo Orta; Marcelo Salazar; Eduardo Rosenmann; Ramon Latorre

Temperature transduction in mammals is possible because of the presence of a set of temperature-dependent transient receptor potential (TRP) channels in dorsal root ganglia neurons and skin cells. Six thermo-TRP channels, all characterized by their unusually high temperature sensitivity (Q10 > 10), have been cloned: TRPV1–4 are heat activated, whereas TRPM8 and TRPA1 are activated by cold. Because of the lack of structural information, the molecular basis for regulation by temperature remains unknown. In this study, we assessed the role of the C-terminal domain of thermo-TRPs and its involvement in thermal activation by using chimeras between the heat receptor TRPV1 and the cold receptor TRPM8, in which the entire C-terminal domain was switched. Here, we demonstrate that the C-terminal domain is modular and confers the channel phenotype regarding temperature sensitivity, channel gating kinetics, and PIP2 (phosphatidylinositol-4,5-bisphophate) modulation. Thus, thermo-TRP channels contain an interchangeable specific region, different from the voltage sensor, which allows them to sense temperature stimuli.


Biophysical Journal | 1992

Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel

S. Candia; M.L. Garcia; Ramon Latorre

Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.


Journal of Clinical Investigation | 2004

Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension

José M. Fernández-Fernández; Marta Tomás; Esther Vázquez; Patricio Orio; Ramon Latorre; Mariano Sentí; Jaume Marrugat; Miguel A. Valverde

Hypertension is the most prevalent risk factor for cardiovascular diseases, present in almost 30% of adults. A key element in the control of vascular tone is the large-conductance, Ca(2+)-dependent K(+) (BK) channel. The BK channel in vascular smooth muscle is formed by an ion-conducting alpha subunit and a regulatory beta(1) subunit, which couples local increases in intracellular Ca(2+) to augmented channel activity and vascular relaxation. Our large population-based genetic epidemiological study has identified a new single-nucleotide substitution (G352A) in the beta(1) gene (KCNMB1), corresponding to an E65K mutation in the protein. This mutation results in a gain of function of the channel and is associated with low prevalence of moderate and severe diastolic hypertension. BK-beta(1E65K) channels showed increased Ca(2+) sensitivity, compared with wild-type channels, without changes in channel kinetics. In conclusion, the BK-beta(1E65K) channel might offer a more efficient negative-feedback effect on vascular smooth muscle contractility, consistent with a protective effect of the K allele against the severity of diastolic hypertension.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dissection of the components for PIP2 activation and thermosensation in TRP channels

Sebastian Brauchi; Gerardo Orta; Carolina Mascayano; Marcelo Salazar; Natalia Raddatz; Hector Urbina; Eduardo Rosenmann; Fernando D. González-Nilo; Ramon Latorre

Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis.


Biological Research | 2006

Large conductance Ca2+-activated K+ (BK) channel: Activation by Ca2+ and voltage

Ramon Latorre; Sebastian Brauchi

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.


The Journal of Membrane Biology | 1985

Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers.

Edward Moczydlowski; Osvaldo Alvarez; Cecilia Vergara; Ramon Latorre

SummaryA Ca-activated, K-selective channel from plasma membrane of rat skeletal muscle was studied in artificial lipid bilayers formed from either phosphatidylethanolamine (PE) or phosphatidylserine (PS). In PE, the single-channel conductance exhibited a complex dependence on symmetrical K+ concentration that could not be described by simple Michaelis-Menten saturation. At low K+ concentrations the channel conductance was higher in PS membranes, but approached the same conductance observed in PE above 0.4m KCl. At the same Ca2+ concentration and voltage, the probability of channel opening was significantly greater in PS than PE. The differences in the conduction and gating, observed in the two lipids, can be explained by the negative surface charge of PS compared to the neutral PE membrane. Model calculations of the expected concentrations of K+ and Ca2+ at various distances from a PS membrane surface, using Gouy-Chapman-Stern theory, suggest that the K+-conduction and Ca2+-activation sites sense a similar fraction of the surface potential, equivalent to the local electrostatic potential at a distance of 9 Å from the surface.


Pflügers Archiv: European Journal of Physiology | 1988

Probing a Ca2+-activated K+ channel with quaternary ammonium ions

Alfredo Villarroel; Osvaldo Alvarez; Andres F. Oberhauser; Ramon Latorre

A series of quaternary amonium (QA) ions were used to probe the gross architecture of the ion conduction pathway in a Ca2+-activated K+ channel from rat muscle membrane. The channels were inserted into planar phospholipid membranes and the single channel currents were measured in the presence of the different QA ions. Internally applied monovalent QA ions (e.g. tetramethylammonium and analogues) induced a voltage-dependent blockade with a unique effective valence of the block equal to 0.30, and blocking potency increases as the compound is made more hydrophobic. Blockade is relieved by increasing the K+ concentration of the internal or external side of the channel. The effective valence of block is independent of K+ concentration. These results suggest that, from the internal side, all monovalent QA ions interact with a site located in the channel conduction system. Divalent QA ions of the type n-alkylbis-α,β-trimethylammonium (bisQn) applied internally also block the channel in a voltage dependent fashion. For short chains (bisQ2-bisQ5), the effective valence decreases with chain length from 0.41 to 0.27, it remains constant for bisQ5 to bisQ6 and increases up to 0.54 for bisQ10. This dependence of block with chain length implies that 27% of the voltage drop within the channel occurs over a distance of ≈ 1 nm. Externally applied monovalent QA ions also block the channel. The site is specific for tetraethylammonium; increasing or decreasing the side chains in one methylene group decrease potency by about 400-fold. It is concluded that the Ca2+-activated K+ channel has wide mouths located at each end and that they are different in molecular nature.


Quarterly Reviews of Biophysics | 2009

Structure^functional intimacies of transient receptor potential channels

Ramon Latorre; Cristián Zaelzer; Sebastian Brauchi

Although a unifying characteristic common to all transient receptor potential (TRP) channel functions remains elusive, they could be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. TRP channels constitute a large superfamily of ion channels, and can be grouped into seven subfamilies based on their amino acid sequence homology: the canonical or classic TRPs, the vanilloid receptor TRPs, the melastatin or long TRPs, ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the polycystins and mucolipins. Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators. Thus, how TRP channels function and how function relates to given structural determinants contained in the channel-forming protein has attracted the attention of biophysicists as well as molecular and cell biologists. The main purpose of this review is to summarize our present knowledge on the structure of channels of the TRP ion channel family. In the absence of crystal structure information for a complete TRP channel, we will describe important protein domains present in TRP channels, structure-function mutagenesis studies, the few crystal structures available for some TRP channel modules, and the recent determination of some TRP channel structures using electron microscopy.


The Journal of General Physiology | 2005

Differential Effects of β1 and β2 Subunits on BK Channel Activity

Patricio Orio; Ramon Latorre

High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (β) subunits. β1 and β2 subunits increase apparent channel calcium sensitivity. The β1 subunit also decreases the voltage sensitivity of the channel and the β2 subunit produces an N-type inactivation of BK currents. We further characterized the effects of the β1 and β2 subunits on the calcium and voltage sensitivity of the channel, analyzing the data in the context of an allosteric model for BK channel activation by calcium and voltage (Horrigan and Aldrich, 2002). In this study, we used a β2 subunit without its N-type inactivation domain (β2IR). The results indicate that the β2IR subunit, like the β1 subunit, has a small effect on the calcium binding affinity of the channel. Unlike the β1 subunit, the β2IR subunit also has no effect on the voltage sensitivity of the channel. The limiting voltage dependence for steady-state channel activation, unrelated to voltage sensor movements, is unaffected by any of the studied β subunits. The same is observed for the limiting voltage dependence of the deactivation time constant. Thus, the β1 subunit must affect the voltage sensitivity by altering the function of the voltage sensors of the channel. Both β subunits reduce the intrinsic equilibrium constant for channel opening (L 0). In the allosteric activation model, the reduction of the voltage dependence for the activation of the voltage sensors accounts for most of the macroscopic steady-state effects of the β1 subunit, including the increase of the apparent calcium sensitivity of the BK channel. All allosteric coupling factors need to be increased in order to explain the observed effects when the α subunit is coexpressed with the β2IR subunit.

Collaboration


Dive into the Ramon Latorre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge