Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amaury Pupo is active.

Publication


Featured researches published by Amaury Pupo.


Frontiers in Physiology | 2016

Extracellular Cysteine in Connexins: Role as Redox Sensors.

Mauricio A. Retamal; Isaac E. García; Bernardo I. Pinto; Amaury Pupo; David Báez; Jimmy Stehberg; Rodrigo Del Rio; Carlos González

Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

Karen Castillo; Gustavo F. Contreras; Amaury Pupo; Yolima P. Torres; Alan Neely; Carlos Gonzalez; Ramon Latorre

Significance β-Subunits (β1–β4) play a critical role in defining the properties of the voltage- and calcium-activated potassium (BK) channel, which in turn determines the physiological role that this channel can perform in different tissues. In particular, the β1-subunit causes an increase in the apparent BK Ca2+ sensitivity due to a stabilization of the voltage sensor in the active configuration. We investigated the molecular details of such voltage-sensor stabilization by mutagenesis and gating current measurements. Mixing regions of β1 and β3 made it possible to identify the N terminus, in particular the third and fourth lysine residues, as the structural element necessary to recover the full effect of β1 on the voltage sensor. Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.


Journal of Investigative Dermatology | 2016

From Hyperactive Connexin26 Hemichannels to Impairments in Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-Ichthyosis-Deafness Syndrome

Isaac E. García; Felicitas Bosen; Paula Mujica; Amaury Pupo; Carolina Flores-Muñoz; Oscar Jara; Carlos Gonzalez; Klaus Willecke; Agustín D. Martínez

The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease.


BMC Cell Biology | 2016

Connexinopathies: A structural and functional glimpse

Isaac E. García; Pavel Prado; Amaury Pupo; Oscar Jara; Diana Rojas-Gomez; Paula Mujica; Carolina Flores-Muñoz; Jorge González-Casanova; Carolina Soto-Riveros; Bernardo I. Pinto; Mauricio A. Retamal; Carlos Gonzalez; Agustín D. Martínez

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Channels | 2014

Proton channel models: Filling the gap between experimental data and the structural rationale

Amaury Pupo; David Baez-Nieto; Agustín D. Martínez; Ramon Latorre; Carlos Gonzalez

Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins.


Iubmb Life | 2015

Carbon monoxide: A new player in the redox regulation of connexin hemichannels

Mauricio A. Retamal; Carmen G. León-Paravic; Marcelo Ezquer; Fernando Ezquer; Rodrigo Del Rio; Amaury Pupo; Agustín D. Martínez; Carlos Gonzalez

Carbon monoxide (CO) is a gaseous transmitter that is known to be involved in several physiological processes, but surprisingly it is also becoming a promising molecule to treat several pathologies including stroke and cancer. CO can cross the plasma membrane and activate guanylate cyclase, increasing the cGMP concentration and activating some kinases, including PKG. The other mechanism of action involves induction of protein carbonylation. CO is known to directly and indirectly modulate the function of ion channels at the plasma membrane, which in turn have important repercussions in the cellular behavior. One group of these channels is hemichannels, which are formed by proteins known as connexins (Cxs). Hemichannel allows not only the flow of ions through their pore but also the release of molecules such as ATP and glutamate. Therefore, their modulation not only impacts cellular function but also cellular communication, having the capability to affect tissular behavior. Here, we review the most recent results regarding the effect of CO on Cx hemichannels and their possible repercussions on pathologies.


Journal of Biological Chemistry | 2016

Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

Bernardo I. Pinto; Isaac E. García; Amaury Pupo; Mauricio A. Retamal; Agustín D. Martínez; Ramon Latorre; Carlos Gonzalez

Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.


FEBS Letters | 2015

Voltage-gated proton (Hv1) channels, a singular voltage sensing domain

Karen Castillo; Amaury Pupo; David Baez-Nieto; Gustavo F. Contreras; Francisco J. Morera; Alan Neely; Ramon Latorre; Carlos Gonzalez

The main role of voltage‐gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H+ concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage‐gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage‐dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain. Hv1 channels are activated by depolarizing voltages, and increases in internal proton concentration. It has been proposed that local conformational changes of the transmembrane segment S4, driven by depolarization, trigger the molecular rearrangements that open Hv1. However, it is still unclear how the electromechanical coupling is achieved between the VSD and the potential pore, allowing the proton flux from the intracellular to the extracellular side. Here we provide a revised view of voltage activation in Hv1 channels, offering a comparative scenario with other voltage sensing channels domains.


The Journal of General Physiology | 2018

The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels

Isaac E. García; Felipe Villanelo; Gustavo F. Contreras; Amaury Pupo; Bernardo I. Pinto; Jorge E. Contreras; Tomas Perez-Acle; Osvaldo Alvarez; Ramon Latorre; Agustín D. Martínez; Carlos Gonzalez

Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.


Pharmacological Research | 2015

Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases

Francisco J. Morera; Julia Saravia; Juan Pablo Pontigo; Luis Vargas-Chacoff; Gustavo F. Contreras; Amaury Pupo; Yenisleidy Lorenzo; Karen Castillo; Cholpon Tilegenova; Luis G. Cuello; Carlos Gonzalez

Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.

Collaboration


Dive into the Amaury Pupo's collaboration.

Top Co-Authors

Avatar

Carlos Gonzalez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge