Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramona Curpan is active.

Publication


Featured researches published by Ramona Curpan.


Nature Chemical Biology | 2009

A crowdsourcing evaluation of the NIH chemical probes.

Tudor I. Oprea; Cristian G. Bologa; Scott Boyer; Ramona Curpan; Robert C. Glen; Andrew L. Hopkins; Christopher A. Lipinski; Garland R. Marshall; Yvonne C Martin; Liliana Ostopovici-Halip; Gilbert Rishton; Oleg Ursu; Roy J. Vaz; Chris L. Waller; Herbert Waldmann; Larry A. Sklar

Between 2004 and 2008, the US National Institutes of Health Molecular Libraries and Imaging initiative pilot phase funded 10 high-throughput screening centers, resulting in the deposition of 691 assays into PubChem and the nomination of 64 chemical probes. We crowdsourced the Molecular Libraries and Imaging initiative output to 11 experts, who expressed medium or high levels of confidence in 48 of these 64 probes.


Molecular Pharmacology | 2011

The Selective Estrogen Receptor Modulator Bazedoxifene Inhibits Hormone-Independent Breast Cancer Cell Growth and Down-Regulates Estrogen Receptor α and Cyclin D1

Joan S. Lewis-Wambi; Helen R. Kim; Ramona Curpan; Ronald Grigg; Mohammed A.B. Sarker; V. Craig Jordan

Bazedoxifene (BZA) is a third-generation selective estrogen receptor modulator (SERM) that has been approved for the prevention and treatment of postmenopausal osteoporosis. It has antitumor activity; however, its mechanism of action remains unclear. In the present study, we characterized the effects of BZA and several other SERMs on the proliferation of hormone-dependent MCF-7 and T47D breast cancer cells and hormone-independent MCF-7:5C and MCF-7:2A cells and examined its mechanism of action in these cells. We found that all of the SERMs inhibited the growth of MCF-7, T47D, and MCF-7:2A cells; however, only BZA and fulvestrant (FUL) inhibited the growth of hormone-independent MCF-7:5C cells. Cell cycle analysis revealed that BZA and FUL induced G1 blockade in MCF-7:5C cells; however, BZA down-regulated cyclin D1, which was constitutively overexpressed in these cells, whereas FUL suppressed cyclin A. Further analysis revealed that small interfering RNA knockdown of cyclin D1 reduced the basal growth of MCF-7:5C cells, and it blocked the ability of BZA to induce G1 arrest in these cells. BZA also down-regulated estrogen receptor-α (ERα) protein by increasing its degradation and suppressing cyclin D1 promoter activity in MCF-7:5C cells. Finally, molecular modeling studies demonstrated that BZA bound to ERα in an orientation similar to raloxifene; however, a number of residues adopted different conformations in the induced-fit docking poses compared with the experimental structure of ERα-raloxifene. Together, these findings indicate that BZA is distinct from other SERMs in its ability to inhibit hormone-independent breast cancer cell growth and to regulate ERα and cyclin D1 expression in resistant cells.


British Journal of Pharmacology | 2013

Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells

Surojeet Sengupta; I Obiorah; Py Maximov; Ramona Curpan; Virgil C. Jordan

Oestrogen receptor alpha (ERα) binds to different ligand which can function as complete/partial oestrogen‐agonist or antagonist. This depends on the chemical structure of the ligands which modulates the transcriptional activity of the oestrogen‐responsive genes by altering the conformation of the liganded‐ERα complex. This study determined the molecular mechanism of oestrogen‐agonistic/antagonistic action of structurally similar ligands, bisphenol (BP) and bisphenol A (BPA) on cell proliferation and apoptosis of ERα + ve breast cancer cells.


Nucleic Acids Research | 2011

ChemProt: a disease chemical biology database

Olivier Taboureau; Sonny Kim Nielsen; Karine Marie Laure Audouze; Nils Weinhold; Daniel Edsgärd; Francisco S. Roque; Irene Kouskoumvekaki; Alina Bora; Ramona Curpan; Thomas Skøt Jensen; Søren Brunak; Tudor I. Oprea

Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical–protein annotation resources, as well as disease-associated protein–protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30 578 proteins. We gathered over 2-million chemical–protein interactions, which were integrated in a quality scored human PPI network of 428 429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram, an antidepressant, with osteogenesis imperfect and leukemia and bisphenol A, an endocrine disruptor, with certain types of cancer, respectively. The server can be accessed at http://www.cbs.dtu.dk/services/ChemProt/.


Organic and Biomolecular Chemistry | 2010

Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and related tetrahydroquinoline analogs

Ritwik Burai; Chinnasamy Ramesh; Marvin Shorty; Ramona Curpan; Cristian G. Bologa; Larry A. Sklar; Tudor I. Oprea; Eric R. Prossnitz; Jeffrey B. Arterburn

The GPR30 agonist probe G-1 and structural analogs were efficiently synthesized using multicomponent or stepwise Sc(III)-catalyzed aza-Diels-Alder cyclization. Optimization of solvent and reaction temperature provided enhanced endo-diastereoselectivity.


Journal of Biomolecular Screening | 2009

Detection of Intracellular Granularity Induction in Prostate Cancer Cell Lines by Small Molecules Using the HyperCyt® High-Throughput Flow Cytometry System

Mark K. Haynes; J. Jacob Strouse; Anna Waller; Andrei Leitao; Ramona Curpan; Cristian G. Bologa; Tudor I. Oprea; Eric R. Prossnitz; Bruce S. Edwards; Larry A. Sklar; Todd A. Thompson

Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt® high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of ~25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells. (Journal of Biomolecular Screening. 2009:596-609)


Molecular Pharmacology | 2014

Defining the Conformation of the Estrogen Receptor Complex That Controls Estrogen-Induced Apoptosis in Breast Cancer

Ifeyinwa Obiorah; Surojeet Sengupta; Ramona Curpan; V. Craig Jordan

Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as “estrogen-like” or “antiestrogen-like” complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.


Hormone Molecular Biology and Clinical Investigation | 2011

The Conformation of the Estrogen Receptor Directs Estrogen-Induced Apoptosis in Breast Cancer: A Hypothesis.

Philipp Y. Maximov; Surojeet Sengupta; Joan S. Lewis-Wambi; Helen R. Kim; Ramona Curpan; V. Craig Jordan

Abstract Background: Estrogens are classified as type I (planar) and type II (angular) based on their structures. In this study, we used triphenylethylenes (TPEs) compounds related to 4-hydroxytamoxifen 4OHT to address the hypothesis that the conformation of the liganded estrogen receptor (ERα) can dictate the E2-induced apoptosis of the ER+ breast cancer cells. Materials and methods: ERα positive MCF7:5C cells were used to study apoptosis induced by E2, 4OHT and TPEs. Growth and apoptosis assays were used to evaluate apoptosis and the ability to reverse E2-induced apoptosis. ERα protein was measured by Western blotting to investigate the destruction of ERα by TPEs in MCF7 cells. Chromatin immunoprecipitation (ChIP) assays were performed to study the in vivo recruitment of ERα and SRC3 at classical E2-responsive promoter TFF1 (PS2) by TPEs. Molecular modeling was used to predict the binding mode of the TPE to the ERα. Results: TPEs were not only unable to induce efficient apoptosis in MCF7:5C cells but also reversed the E2-induced apoptosis similar to 4OHT. Furthermore, the TPEs and 4OHT did not reduce the ERα protein levels unlike E2. ChIP assay confirmed very weak recruitment of SRC3 despite modest recruitment of ERα in the presence of TPEs. Mole-ular modeling suggests that TPE would bind in antagonistic mode with ERα. Conclusion: Our results advances the hypothesis that the TPE liganded ERα complex structurally resembles the 4OHT bound ERα and cannot efficiently recruit co-activator SRC3. As a result, the TPE complex cannot induce apoptosis of ER+ breast cancer cells, although it can cause growth of the breast cancer cells. The conformation of the estrogen-ER complex differentially controls growth and apoptosis.


Journal of the National Cancer Institute | 2015

Estrogen Receptor Mutations Found in Breast Cancer Metastases Integrated With the Molecular Pharmacology of Selective ER Modulators

V. Craig Jordan; Ramona Curpan; Philipp Y. Maximov

The consistent reports of mutations at Asp538 and Tyr537 in helix 12 of the ligand-binding domain (LBD) of estrogen receptors (ERs) from antihormone-resistant breast cancer metastases constitute an important advance. The mutant amino acids interact with an anchor amino acid, Asp351, to close the LBD, thereby creating a ligand-free constitutively activated ER. Amino acids Asp 538, Tyr 537, and Asp 351 are known to play a role in either the turnover of ER, the antiestrogenic activity of the ER complex, or the estrogen-like actions of selective ER modulators. A unifying mechanism of action for these amino acids to enhance ER gene activation and growth response is presented. There is a range of mutations described in metastases vs low to zero in primary disease, so the new knowledge is of clinical relevance, thereby confirming an additional mechanism of acquired resistance to antihormone therapy through cell population selection pressure and enrichment during treatment. Circulating tumor cells containing ER mutations can be cultured ex vivo, and tumor tissues can be grown as patient-derived xenografts to add a new dimension for testing drug susceptibility for future drug discovery.


Journal of Medicinal Chemistry | 2014

Influence of the Length and Positioning of the Antiestrogenic Side Chain of Endoxifen and 4-Hydroxytamoxifen on Gene Activation and Growth of Estrogen Receptor Positive Cancer Cells

Philipp Y. Maximov; Daphne J. Fernandes; Russell E. McDaniel; Cynthia B. Myers; Ramona Curpan; V. Craig Jordan

Tamoxifen has biologically active metabolites: 4-hydroxytamoxifen (4OHT) and endoxifen. The E-isomers are not stable in solution as Z-isomerization occurs. We have synthesized fixed ring (FR) analogues of 4OHT and endoxifen as well as FR E and Z isomers with methoxy and ethoxy side chains. Pharmacologic properties were documented in the MCF-7 cell line, and prolactin synthesis was assessed in GH3 rat pituitary tumor cells. The FR Z-isomers of 4OHT and endoxifen were equivalent to 4OHT and endoxifen. Other test compounds used possessed partial estrogenic activity. The E-isomers of FR 4OHT and endoxifen had no estrogenic activity at therapeutic serum concentrations. None of the newly synthesized compounds were able to down-regulate ER levels. Molecular modeling demonstrated that some compounds would each create a best fit with a novel agonist conformation of the ER. The results demonstrate modulation by the ER complex of cell replication or gene transcription in cancer.

Collaboration


Dive into the Ramona Curpan's collaboration.

Top Co-Authors

Avatar

Tudor I. Oprea

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Edwards

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Oleg Ursu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Anna Waller

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Wu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge