Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramsay J. McFarlane is active.

Publication


Featured researches published by Ramsay J. McFarlane.


Journal of Cell Science | 2004

S. pombe meiotic linear elements contain proteins related to synaptonemal complex components

Alexander Lorenz; David W. Pryce; Maria Novatchkova; Frank Eisenhaber; Ramsay J. McFarlane; Josef Loidl

The fission yeast Schizosaccharomyces pombe does not form synaptonemal complexes (SCs) in meiotic prophase nuclei. Instead, thin threads, the so-called linear elements (LEs), are observed at the corresponding stages by electron microscopy. Here, we demonstrate that S. pombe Rec10 is a protein related to the Saccharomyces cerevisiae SC protein Red1 and that it localizes to LEs. Moreover, a homologue to S. cerevisiae Hop1 does exist in S. pombe and we show by in situ immunostaining that it, and the kinase Mek1 (a homologue of which is also known to be associated with SCs), localizes to LEs. These observations indicate the evolutionary relationship of LEs with the lateral elements of SCs and suggest that these structures might exert similar functions in S. cerevisiae and S. pombe.


Molecular Genetics and Genomics | 1997

Characterisation of the Schizosaccharomyces pombe rad4/cut5 mutant phenotypes: dissection of DNA replication and G2 checkpoint control function.

Ramsay J. McFarlane; Antony M. Carr; Clive Price

Abstract Mutation of the essential Schizosaccharomyces pombe rad4/cut5 gene causes sensitivity to UV and ionising radiation at the permissive temperature whilst at the restrictive temperature cells fail to undergo DNA replication but still attempt mitosis owing to a defective S-phase checkpoint response. Many mutations in genes encoding DNA replication proteins also abolish checkpoint responses, possibly because the replication machinery is a pre-requisite for the generation of the signal. We demonstrate here that rad4/cut5 cells fail to arrest cell division when treated with the replication inhibitor hydroxyurea at the semi-permissive temperature 32° C, but retain essentially normal replicative capacity. This demonstrates that the replication and checkpoint function of the rad4/cut5 gene product can be separated and that the Rad4 protein differs from other replication proteins in being directly involved in generating the S-phase checkpoint signal. Furthermore, we have investigated the checkpoint response or rad4/cut5-deficient cells to γ-irradiation and UV-mimetic drugs. We find that, at the restrictive temperature, the rad4−/cut5−cells fail to delay mitosis in response to γ-irradiation whilst retaining a normal checkpoint response to the UV-mimetic drug 4-nitroquinoline-1-oxide. The lack of the γ-irradiation checkpoint is reminiscent of the deficiency associated with mutation of the human ATM locus, the causative deficiency of the heritable disorder ataxia telangiectasia. The implications of our results for the organisation of distinct checkpoint-response pathways in both fission yeast and mammalian cells are discussed. Moreover the data are consistent with a model in which the generation of the S-Phase checkpoint signal is DNA polymerase ɛ dependent.


Biochemical Journal | 2010

Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore

Alessa Jaendling; Ramsay J. McFarlane

Translin, and its binding partner protein TRAX (translin-associated factor-X) are a paralogous pair of conserved proteins, which have been implicated in a broad spectrum of biological activities, including cell growth regulation, mRNA processing, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis, although their precise role in some of these processes remains unclear. Furthermore, translin (with or without TRAX) has nucleic-acid-binding activity and it is apparent that controlling nucleic acid metabolism and distribution are central to the biological role(s) of this protein and its partner TRAX. More recently, translin and TRAX have together been identified as enhancer components of an RNAi (RNA interference) pathway in at least one organism and this might provide critical insight into the biological roles of this enigmatic partnership. In the present review we discuss the biological and the biochemical properties of these proteins that indicate that they play a central and important role in eukaryotic cell biology.


Cell Cycle | 2010

The many facets of the Tim-Tipin protein families' roles in chromosome biology.

Ramsay J. McFarlane; Saira Mian; Jacob Z. Dalgaard

Failures in DNA replication are a potent force for driving genome instability. The proteins which form the replisome, the DNA replication machinery, play a fundamental role in preventing replicative catastrophes. The Tim (TIMELESS/TIMEOUT) and Tipin proteins are two conserved replisome associated proteins which have functions in preventing replication fork collapse and replicative checkpoint signalling in response to factors which slow the progression of the replisome. Intriguingly, TIMELESS family members have been implicated in the regulation of the biological clock, giving a tantalising pointer to a possible link between DNA replication and circadian rhythm control. Here we report on our current understanding of the many facets of these protein families in maintaining genome stability and replication checkpoint control.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1

David W. Pryce; Soshila Ramayah; Alessa Jaendling; Ramsay J. McFarlane

DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.


Trends in Genetics | 2010

A role for recombination in centromere function

Ramsay J. McFarlane; Timothy C. Humphrey

Centromeres are essential for chromosome segregation during both mitosis and meiosis. There are no obvious or conserved DNA sequence motif determinants for centromere function, but the complex centromeres found in the majority of eukaryotes studied to date consist of repetitive DNA sequences. A striking feature of these repeats is that they maintain a high level of inter-repeat sequence identity within the centromere. This observation is suggestive of a recombination mechanism that operates at centromeres. Here we postulate that inter-repeat homologous recombination plays an intrinsic role in centromere function by forming covalently closed DNA loops. Moreover, the model provides an explanation of why both inverted and direct repeats are maintained and how they contribute to centromere function.


Molecular Genetics and Genomics | 1996

5-Azacytidine treatment of the fission yeast leads to cytotoxicity and cell cycle arrest

Elaine M. Taylor; Ramsay J. McFarlane; Clive Price

Abstract A fission yeast gene which shares considerable sequence homology with cytosine-specific DNA methyltransferases has recently been identified. This discovery has led us to investigate the effects of the treatment of fission yeast with the nucleoside analogue 5-azacytidine (5-azaC). 5-AzaC is known to inhibit cytosine methylation as a result of the formation of stable covalent complexes between DNA (cytosine-5) methyltransferases (C5 Mtases) and 5-azaC containing DNA. Here we demonstrate that 5-azaC treatment of Schizosaccharomyces pombe leads to reversible cell cycle arrest at the G2/M transition. This reversible arrest is dependent on the cell cycle checkpoint mechanisms which act to prevent the onset of mitosis in the presence of either damaged or unreplicated DNA. Treatment of S. pombe cell division cycle and checkpoint mutants indicates that 5-azaC causes DNA damage and is likely to inhibit a late stage in DNA replication. The data show that viability in the presence of the drug requires both the DNA damage and the replication checkpoint pathways to be functional. 5-AzaC also elicits a transcriptional response which is associated with DNA damage and the inhibition of DNA replication in fission yeast, and this response is absent in cells carrying G2 checkpoint mutations. The implications of these observations for both the use of 5-azaC in cancer chemotherapy and the existence of cytosine methylation in fission yeast are discussed.


Chromosoma | 2010

SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe

Mario Spirek; Anna Estreicher; Edina Csaszar; Ramsay J. McFarlane; Felicity Z. Watts; Josef Loidl

In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombes SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.


Yeast | 2006

Homologous chromosome pairing in Schizosaccharomyces pombe

David W. Pryce; Ramsay J. McFarlane

Homologous chromosome pairing is a central feature of meiosis I, contributing to the correct segregation of chromosomes during meiosis. The fission yeast, Schizosaccharomyces pombe, has been widely used to study meiotic chromosome dynamics, partly because studies in this yeast are simplified due to the lack of post‐pairing synaptic structures. Chromosome pairing in Sz. pombe occurs differentially throughout the genome. Telomeres cluster at the spindle pole body (SPB) at the onset of meiosis, imposing a spatial restriction on pairing events. Subsequently, centromeres dissociate from the SPB and pair in a recombination‐ and heterochromatin (Swi6)‐independent fashion. Pairing of telomere distal regions occurs during meiotic prophase, concomitant with a dynamic association/dissociation of homologous regions, with interhomologue associations becoming increasingly stable. The stabilization of paired regions is enhanced by factors required for the initiation of meiotic recombination, suggesting that recombination stabilizes paired regions. However, substantial pairing is initiated in the absence of recombination; this is dependent upon another factor, the conserved Meu13 protein, demonstrating that recombination is not required for initial pairing interactions. During meiotic prophase Sz. pombe exhibits a pronounced dynein‐dependent nuclear oscillation, which drives the pairing of centromeric and interstitial regions. Dynein is also required for the significant levels of achiasmate reductional segregation observed in Sz. pombe, possibly implicating the centromere‐associated pairing with achiasmate homologue segregation. Whilst Sz. pombe does not form discernable synaptic structures continuously along the meiotic chromosomes, it does form proteinacious, meiosis‐specific, linear structures (linear elements). However, the role, if any, of these structures in mediating homologue pairing is unknown. Copyright


Archive | 2012

Microarray Meta-Analysis: From Data to Expression to Biological Relationships

Julia Feichtinger; Gerhard G. Thallinger; Ramsay J. McFarlane; Lee Larcombe

Since the introduction of microarray technology, it has become the workhorse for mRNA expression profiling. Its application ranges from investigating gene function, regulation, and co-expression, to clinical use in diagnosis and prognosis. Over the last decade, a large number of microarray experiments have become available in public repositories often addressing similar or related hypotheses. The large compendia of gene expression data provide the opportunity to conduct meta-analyses by combining data from various independent but related studies. Such data integration has the potential to enhance the reliability and generalizability of the results of individual microarray studies.

Collaboration


Dive into the Ramsay J. McFarlane's collaboration.

Top Co-Authors

Avatar

Julia Feichtinger

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive Price

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard G. Thallinger

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge