Ramsey S. Lewis
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramsey S. Lewis.
Genome | 2008
H. Moon; Jennifer Nicholson; Ramsey S. Lewis
The recent development of microsatellite markers for tobacco, Nicotiana tabacum L., may be valuable for genetic studies within the genus Nicotiana. The first objective was to evaluate transferability of 100 N. tabacum microsatellite primer combinations to 5 diploid species closely related to tobacco. The number of primer combinations that amplified scorable bands in these species ranged from 42 to 56. Additional objectives were to assess levels of genetic diversity amongst available accessions of diploid relatives closely related to tobacco (species of sections Sylvestres and Tomentosae), and to evaluate the efficacy of microsatellite markers for establishing species relationships in comparison with existing phylogenetic reconstructions. A subset of 46 primer combinations was therefore used to genotype 3 synthetic tobaccos and an expanded collection of 51 Nicotiana accessions representing 15 species. The average genetic similarity for 7 diverse accessions of tobacco was greater than the average similarity for N. otophora accessions, but lower than the average genetic similarities for N. sylvestris, N. tomentosa, N. kawakamii, and N. tomentosiformis accessions. A microsatellite-based phylogenetic tree was largely congruent with taxonomic representations based on morphological, cytological, and molecular observations. Results will be useful for selection of parents for creation of diploid mapping populations and for germplasm introgression activities.
Genetic Resources and Crop Evolution | 2007
Ramsey S. Lewis; J. S. Nicholson
The genus Nicotiana is a member of the nightshade (Solanaceae) family, and is comprised of 70 currently recognized, naturally occurring species. Genetic variability within N. tabacum L., the species of primary economic importance, was likely affected by several genetic bottlenecks. Nicotiana tabacum is a classic amphidiploid that arose after chance interspecific hybridization between N. sylvestris Spegazinni et Comes and a member of section Tomentosae, likely N. tomentosiformis Goodspeed, N. otophora Grisebach, or an introgressive hybrid between the two. Only a fraction of the genetic variability that existed in the diploid progenitor gene pools probably entered into N. tabacum. Genetic drift, coupled with natural and human selection, subsequently resulted in the formation of narrow genetic pools corresponding to modern commercial market classes. Genetic variability in Nicotiana has gained increased attention in recent years because of investment in Nicotiana genomics research, interest in development of tobacco products with reduced harm characteristics, and concentration on using Nicotiana species for plant-based production of commercially useful proteins. A storehouse of genetic diversity for N. tabacum is available in approximately 1,900 accessions maintained by the United States Nicotiana Germplasm Collection. Seeds of 224 accessions representing 59 wild Nicotiana species are also maintained. The collection is currently maintained by North Carolina State University and is part of the United States National Plant Germplasm System (NPGS). The collection’s curator satisfies hundreds of seed requests made annually by scientists using Nicotiana germplasm for basic biological investigations and by researchers in the area of applied tobacco science.
Theoretical and Applied Genetics | 2003
Ramsey S. Lewis; Major M. Goodman
Abstract Exotic maize (Zea mays L.) germplasm may allow for increased flexibility and greater long-term progress from selection if it can be incorporated at high rates into U.S. breeding programs. Crosses were made between a temperate line, NC262A, and each of eight different lines consisting of 100% temperate-adapted tropical germplasm. Pedigree selection was used to generate a set of 148 F5S2 lines that were evaluated in testcrosses with FR992/FR1064 in nine North Carolina environments. Several entries had grain yield, grain moisture content and standability that were comparable to three commercial checks. The best testcrosses outyielded the cross NC262A × FR992/FR1064 by 9.5 to 10.9%, suggesting that a significant amount of tropical germplasm was retained in these lines and that this germplasm combined well with the Stiff Stalk tester. Previous researchers had suggested that tropical alleles could be rapidly lost during inbreeding in populations derived from tropical × temperate bi-parental crosses, leading to the development of lines that possess significantly less than 50% tropical germplasm. F5S5 sub-lines corresponding to the 14 best testcrosses were genotyped at 47 to 49 polymorphic simple sequence repeat (SSR) loci across all ten chromosomes to estimate the amount of tropical germplasm that was retained. The estimated genetic contribution from the tropical parent ranged from 32 to 70%, with the average being 49%. Only two of the 14 lines deviated significantly from a 50%-tropical/50%-temperate ratio, suggesting limited overall selection against germplasm from the tropical parents. These experiments collectively demonstrated that tropical maize germplasm can be incorporated at high rates into a temperate line via pedigree breeding methods in order to derive new inbred lines with acceptable agronomic performance.
Molecular Breeding | 2012
Vijay Vontimitta; Ramsey S. Lewis
Black shank, caused by Phytophthora nicotianae, is one of the most important diseases affecting tobacco (Nicotiana tabacum L.) production worldwide. While monogenic resistance to Race 0 of this pathogen has been transferred via interspecific introgression, quantitative resistance is currently needed to provide adequate resistance to all races. The objective of this research was to gain increased insight into the inheritance of resistance in the highly-resistant cigar tobacco line, Beinhart-1000, and to identify genomic regions contributing to this resistance. A doubled haploid population was generated from a cross between Beinhart-1000 and the susceptible cultivar, Hicks. The population was evaluated for field resistance in three environments and genotyped with 206 polymorphic microsatellite markers. No doubled haploid line exhibited as high a level of resistance as Beinhart-1000. Heritability was high and multiple interval mapping suggested that at least six quantitative trait loci (QTL) may contribute to the high level of resistance in this line. The two largest QTL explained 25.4 and 20.4% of the observed phenotypic variation for end percent survival. A model including all six significant QTL explained 64.3% of the phenotypic variation and 73.1% of the genetic variation. The two major identified QTL and their associated markers may be of use for employing Beinhart-1000 as a source of black shank resistance in tobacco breeding. The major QTL on linkage group four was found to cosegregate with Abl, a gene involved in accumulation of the trichome exudate cis-abienol. The question of pleiotropy versus linkage needs to be investigated with respect to partial resistance against P. nicotianae.
Journal of Agricultural and Food Chemistry | 2012
Ramsey S. Lewis; Parker Rg; Danehower Da; Andres K; Jack Am; Whitley Ds; Bush Lp
Tobacco-specific nitrosamine (TSNA) formation in tobacco is influenced by alkaloid levels and the availability of nitrosating agents. Tobacco types differ in their potential for TSNA accumulation due to genetic, agronomic, and curing factors. Highest TSNA concentrations are typically measured in burley tobaccos. One of the main genetic differences between burley and all other tobacco types is that this tobacco type is homozygous for recessive mutant alleles at the Yellow Burley 1 (Yb(1)) and Yellow Burley 2 (Yb(2)) loci. In addition, burley tobacco is typically fertilized at higher nitrogen (N) rates than most other tobacco types. This study utilized nearly isogenic lines (NILs) differing for the presence of dominant or recessive alleles at the Yb(1) and Yb(2) loci to investigate the potential influence of genes at these loci on TSNA accumulation. Three pairs of NILs were evaluated at three different nitrogen fertilization rates for alkaloid levels, nitrogen physiology measures, and TSNA accumulation after air-curing. As previously observed by others, positive correlations were observed between N application rates and TSNA accumulation. Recessive alleles at Yb(1) and Yb(2) were associated with increased alkaloid levels, reduced nitrogen use efficiency, reduced nitrogen utilization efficiency, and increased leaf nitrate nitrogen (NO(3)-N). Acting together, these factors contributed to significantly greater TSNA levels in genotypes possessing the recessive alleles at these two loci relative to those carrying the dominant alleles. The chlorophyll-deficient phenotype conferred by the recessive yb(1) and yb(2) alleles probably contributes in a substantial way to increase available NO(3)-N during curing and, consequently, increased potential for TSNA formation.
Journal of Agricultural and Food Chemistry | 2010
Vijay Vontimitta; David A. Danehower; Tyler Steede; H. Moon; Ramsey S. Lewis
cis-Abienol and sucrose esters are Nicotiana tabacum leaf surface components that likely influence plant resistance to pests. Their breakdown products also contribute to flavor and aroma characteristics of certain tobacco types. Mapping of genes involved in the biosynthesis of these compounds could permit development of molecular-based tools for generating tobacco types with novel cured leaf chemistry profiles. A doubled haploid mapping population segregating for major genes (Abl and BMVSE) affecting the ability to accumulate cis-abienol and sucrose esters was generated and genotyped with a large set of microsatellite markers. The two genes were found to reside on chromosome A of the N. tabacum genome with a distance of 8.2 cM (centimorgans) between them. Seventeen microsatellite markers were also placed on this linkage group, several of which exhibited complete cosegregation with Abl and BMVSE. Results should aid breeding efforts focused on modification of this aspect of tobacco cured leaf chemistry.
PLOS ONE | 2015
Ramsey S. Lewis; Harry O. Lopez; Steve W. Bowen; Karen R. Andres; William T. Steede; Ralph E. Dewey
Motivation exists to develop tobacco cultivars with reduced nicotine content for the purpose of facilitating compliance with expected tobacco product regulations that could mandate the lowering of nicotine levels per se, or the reduction of carcinogenic alkaloid-derived tobacco specific nitrosamines (TSNAs). A berberine bridge enzyme-like (BBL) gene family was recently characterized for N. tabacum and found to catalyze one of the final steps in pyridine alkaloid synthesis for this species. Because this gene family acts downstream in the nicotine biosynthetic pathway, it may represent an attractive target for genetic strategies with the objective of reducing alkaloid content in field-grown tobacco. In this research, we produced transgenic doubled haploid lines of tobacco cultivar K326 carrying an RNAi construct designed to reduce expression of the BBL gene family. Field-grown transgenic lines carrying functional RNAi constructs exhibited average cured leaf nicotine levels of 0.684%, in comparison to 2.454% for the untransformed control. Since numerous barriers would need to be overcome to commercialize transgenic tobacco cultivars, we subsequently pursued a mutation breeding approach to identify EMS-induced mutations in the three most highly expressed isoforms of the BBL gene family. Field evaluation of individuals possessing different homozygous combinations of truncation mutations in BBLa, BBLb, and BBLc indicated that a range of alkaloid phenotypes could be produced, with the triple homozygous knockout genotype exhibiting greater than a 13-fold reduction in percent total alkaloids. The novel source of genetic variability described here may be useful in future tobacco breeding for varied alkaloid levels.
Plant Disease | 2008
P. E. Elliott; Ramsey S. Lewis; H. D. Shew; W. A. Gutierrez; J. S. Nicholson
Stem rot and target spot of tobacco, caused by Rhizoctonia solani and its teleomorph Thanatephorus cucumeris, respectively, can cause serious problems in production of tobacco (Nicotiana tabacum) seedlings. Previous screens for genetic resistance in tobacco have been limited. The objective of this study was to evaluate 97 genotypes composing several classes of tobacco and related Nicotiana spp. for seedling resistance to stem rot and target spot. Significant differences in disease incidence initially were observed among the genotypes for both stem rot and target spot; however, resistance to target spot was not observed when disease pressure was high. Partial resistance to stem rot was observed in several genotypes in repeated tests. These accessions may be useful as a source of resistance to R. solani in future breeding efforts.
Phytochemistry | 2013
Bin Cai; Anne M. Jack; Ramsey S. Lewis; Ralph E. Dewey; Lowell P. Bush
Nicotine is a chiral compound and consequently exists as two enantiomers. Since (R)-nicotine consists of less than 0.5% of total nicotine pool in tobacco, few investigations relating to (R)-nicotine have been reported. However, previous studies of nicotine demethylases suggested there was substantial amount of (R)-nicotine at synthesis in the tobacco plant. In this study, the accumulation and translocation of (R)-nicotine in tobacco was analyzed. The accumulation of nicotine and its demethylation product the nornicotine enantiomers, were investigated in different tobacco plant parts and at different growth and post-harvest stages. Scion/rootstock grafts were used to separate the contributions of roots (source) from leaves (sink) to the final accumulation of nicotine and nornicotine in leaf tissue. The results indicate that 4% of nicotine is in the (R) form at synthesis in the root. After the majority of (R)-nicotine is selectively demethylated by CYP82E4, CYP82E5v2 and CYP82E10 in the root, nicotine and nornicotine are translocated to leaf, where more nicotine becomes demethylated. Depending on the CYP82E4 activity in senescing leaf, constant low (R)-nicotine remains in the tobacco leaf and variable nornicotine composition is produced. These results confirmed the enantioselectivity of three nicotine demethylases in planta, could be used to predict the changes of nicotine and nornicotine composition, and may facilitate demethylase discovery in the future.
Molecular Breeding | 2012
Dandan Li; Ramsey S. Lewis; Anne M. Jack; Ralph E. Dewey; Steve W. Bowen; Robert Miller
Nornicotine accumulation in tobacco is of concern because nornicotine is a precursor of N-nitrosonornicotine (NNN), a tobacco constituent recognized as a carcinogen by the health community. Nornicotine is derived from nicotine through a demethylation process catalyzed by nicotine demethylase enzymes. Three genes (CYP82E4, CYP82E5v2, and CYP82E10) have currently been identified that encode for these enzymes. Ethyl methane sulfonate has been used to introduce mutations into each of these genes to prevent production of functional gene products. These mutants represent a valuable tool for reducing nornicotine and NNN levels in cured tobacco leaves and their derived products. Methods are currently needed to rapidly and efficiently develop new cultivars possessing these mutant alleles. The objective of this study was to develop efficient, user-friendly DNA markers to identify these mutations based on single nucleotide polymorphisms (SNPs). Four dCAPS (derived cleaved amplified polymorphic sequence) markers were designed for a truncation mutation in CYP82E4, and a single marker was developed for a similar mutation in CYP82E5v2. Two CAPS (cleaved amplified polymorphic sequence) markers were designed for a missense mutation in CYP82E10. Because of the co-dominant nature of the CAPS and dCAPS markers, heterozygous and homozygous plants can be easily differentiated. Genotypes determined by the CAPS and dCAPS marker methods were validated by DNA sequencing and phenotypic analysis of plants carrying various mutant combinations. These markers can be used in marker-assisted selection programs to quickly introgress the desired mutations into commercial varieties in order to reduce nornicotine and NNN levels in tobacco leaves.