Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ran Mo is active.

Publication


Featured researches published by Ran Mo.


Advanced Materials | 2012

Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery.

Ran Mo; Qiong Sun; Jingwei Xue; Nan Li; Wenyuan Li; Can Zhang; Qineng Ping

Zwitterionic oligopeptide liposomes (HHG2C(18)-L) containing a smart lipid (1,5-dioctadecyl-L-glutamyl 2-histidyl-hexahydrobenzoic acid, HHG2C(18)) are developed to overcome the barriers faced by anticancer drugs on the route from the site of injection into the body to the final antitumor target within transport steps with multiple physiological and biological barriers. HHG2C(18)-L show the multistage pH-responsive to the tumor cell (the mitochondria in this case). Their multistage pH response leads to more effective entry of the tumor cell, improved escape from the endolysosomes, and accumulation at the mitochondria (see picture).


Biomaterials | 2011

The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles

Ran Mo; Xiang Jin; Nan Li; Caoyun Ju; Minjie Sun; Can Zhang; Qineng Ping

The overall objective of the present investigation was to demonstrate the effect of N-octyl-O-sulfate chitosan (NOSC) micelles on enhancing the oral absorption of paclitaxel (PTX) in vivo and in vitro, and identify the mechanism of this action of NOSC. In vivo, the oral bioavailability of PTX loaded in NOSC micelles (PTX-M) was 6-fold improved in comparison with that of an orally dosed Taxol(®). In the Caco-2 uptake studies, NOSC micelles brought about a significantly higher amount of PTX accumulated in Caco-2 cells via both clathrin- and caveolae-mediated endocytosis, and NOSC had the effect on inhibiting PTX secreted by P-glycoprotein (P-gp), which was also proved by the studies on rhodamine 123 incorporated in NOSC micelles, fluorescence labeled micelles. The mechanism of NOSC on P-gp inhibition was demonstrated in connection with interfering the P-gp ATPase by NOSC rather than reducing the P-gp expression. Moreover, NOSC with the concentration approaching the critical micellar concentration (CMC) had the strongest effect on P-gp inhibition. In the Caco-2 transport studies, the presence of verapamil and NOSC both improved the transport of Taxol(®), which further certified the effect of NOSC on P-gp inhibition, and PTX-M enhanced the permeability of PTX compared with Taxol(®). The apparent permeability coefficient (Papp) of PTX-M decreased significantly at 4 °C in comparison with at 37 °C, which indicated a predominant active endocytic mechanism for the transport of PTX-M, a P-gp-independent way. Furthermore, the transcytosis of PTX-M was via clathrin-mediated rather than caveolae-mediated. In addition, the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers had no significant change during the transport study, which pointed out that NOSC had no effect on opening the intercellular tight junctions. Based on the obtained results, it is suggested that NOSC micelles might be a potentially applicable tool for enhancing the oral absorption of P-gp substrates.


Journal of the American Chemical Society | 2014

Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.

Wujin Sun; Tianyue Jiang; Yue Lu; Margaret Reiff; Ran Mo; Zhen Gu

A bioinspired cocoon-like anticancer drug delivery system consisting of a deoxyribonuclease (DNase)-degradable DNA nanoclew (NCl) embedded with an acid-responsive DNase I nanocapsule (NCa) was developed for targeted cancer treatment. The NCl was assembled from a long-chain single-stranded DNA synthesized by rolling-circle amplification (RCA). Multiple GC-pair sequences were integrated into the NCl for enhanced loading capacity of the anticancer drug doxorubicin (DOX). Meanwhile, negatively charged DNase I was encapsulated in a positively charged acid-degradable polymeric nanogel to facilitate decoration of DNase I into the NCl by electrostatic interactions. In an acidic environment, the activity of DNase I was activated through the acid-triggered shedding of the polymeric shell of the NCa, resulting in the cocoon-like self-degradation of the NCl and promoting the release of DOX for enhanced therapeutic efficacy.


Angewandte Chemie | 2014

Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery.

Ran Mo; Tianyue Jiang; Zhen Gu

A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.


Advanced Materials | 2015

Furin‐Mediated Sequential Delivery of Anticancer Cytokine and Small‐Molecule Drug Shuttled by Graphene

Tianyue Jiang; Wujin Sun; Qiuwen Zhu; Nancy A. Burns; Saad A. Khan; Ran Mo; Zhen Gu

A cellular protease (furin)-mediated graphene-based nanosystem is developed for co-delivery of a membrane-associated cytokine (tumor-necrosis-factor-related apoptosis-inducing ligand, TRAIL) and an intracellular-acting small-molecule drug (Doxorubicin, DOX). TRAIL and DOX can be sequentially released toward the plasma membrane and nucleus, respectively.


Biomaterials | 2015

Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment

Assogba Gabin Assanhou; Wenyuan Li; Lei Zhang; Lingjing Xue; Lingyi Kong; Hongbin Sun; Ran Mo; Can Zhang

Multidrug resistance (MDR) remains the primary issue in cancer therapy, which is characterized by the overexpressed P-glycoprotein (P-gp)-included efflux pump or the upregulated anti-apoptotic proteins. In this study, a D-alpha-tocopheryl poly (ethylene glycol 1000) succinate (TPGS) and hyaluronic acid (HA) dual-functionalized cationic liposome containing a synthetic cationic lipid, 1,5-dioctadecyl-N-histidyl-L-glutamate (HG2C18) was developed for co-delivery of a small-molecule chemotherapeutic drug, paclitaxel (PTX) with a chemosensitizing agent, lonidamine (LND) to treat the MDR cancer. It was demonstrated that the HG2C18 lipid contributes to the endo-lysosomal escape of the liposome following internalization for efficient intracellular delivery. The TPGS component was confirmed able to elevate the intracellular accumulation of PTX by inhibiting the P-gp efflux, and to facilitate the mitochondrial-targeting of the liposome. The intracellularly released LND suppressed the intracellular ATP production by interfering with the mitochondrial function for enhanced P-gp inhibition, and additionally, sensitized the MDR breast cancer (MCF-7/MDR) cells to PTX for promoted induction of apoptosis through a synergistic effect. Functionalized with the outer HA shell, the liposome preferentially accumulated at the tumor site and showed a superior antitumor efficacy in the xenograft MCF-7/MDR tumor mice models. These findings suggest that this dual-functional liposome for co-delivery of a cytotoxic drug and an MDR modulator provides a promising strategy for reversal of MDR in cancer treatment.


Biomaterials | 2013

Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids

Ran Mo; Qiong Sun; Nan Li; Can Zhang

pH-sensitive liposomes (HHG2C(18)-L and PEGHG2C(18)-L) based on zwitterionic oligopeptide lipids as anticancer drug carriers were developed and evaluated for effective intracellular delivery and enhanced antitumor activity. The amino acid-based lipids, 1,5-dioctadecyl-l-glutamyl 2-histidyl-hexahydrobenzoic acid (HHG2C(18)) and 1,5-distearyl N-(N-α-(4-mPEG2000) butanedione)-histidyl-l-glutamate (PEGHG2C(18)), were synthesized, which have the multistage pH-response to tumor microenvironmental pH (pH(e), pH 6.0-7.0) and endosomal/lysosomal pH (pH(i), pH 4.0-6.0) successively. HHG2C(18)-L contains HHG2C(18), while PEGHG2C(18)-L includes HHG2C(18) and PEGHG2C(18). Both of them displayed the capability of charge conversion to the surrounding pH. The zeta potentials of HHG2C(18)-L and PEGHG2C(18)-L were negative at pH 7.4, whereas positive at pH 6.5 and more positive at lower pH. Coumarin 6-loaded HHG2C(18)-L (C6/HHG2C(18)-L) and PEGHG2C(18)-L (C6/PEGHG2C(18)-L) showed higher tumor cellular uptake due to electrostatic absorptive endocytosis at pH(e) (pH 6.5), produced proton sponge effect for endo-lysosomal escape, and accumulated to the mitochondria based on stronger positive charge by the hydrolysis of a pH-sensitive linker at pH(i) (pH 5.5 and pH 4.5). Furthermore, temsirolimus (CCI-779)-loaded HHG2C(18)-L (CCI-779/HHG2C(18)-L) and PEGHG2C(18)-L (CCI-779/PEGHG2C(18)-L) had significantly higher antiproliferative and apoptosis inducing effects toward the human renal carcinoma (A498) cells at pH 6.5 relative to that at pH 7.4. The half maximal inhibitory concentration (IC50) of CCI-779/HHG2C(18)-L and CCI-779/PEGHG2C(18)-L were about 3 μg/mL and 5 μg/mL at pH 6.5, 1.67-fold and 1.60-fold improved relative to that at pH 7.4, respectively. The total apoptotic ratio of CCI-779/HHG2C(18)-L and CCI-779/PEGHG2C(18)-L increased from 9.90% and 7.78% at pH 7.4 to 19.53% and 12.10% at pH 6.5, respectively. In vivo, CCI-779/PEGHG2C(18)-L after intravenous administration presented remarkably higher bioavailability and blood persistence compared with unPEGylated CCI-779/HHG2C(18)-L, and had the strongest antitumor efficacy against xenograft renal cancer (Renca) tumor models. Accordingly, the results provide the feasibility of using pH-sensitive zwitterionic oligopeptide lipids to extend the applications of liposomes to efficient anticancer drug delivery in cancer therapy.


Biomacromolecules | 2014

Bio-Inspired Synthetic Nanovesicles for Glucose-Responsive Release of Insulin

Wanyi Tai; Ran Mo; Jin Di; Vinayak Subramanian; Xiao Gu; John B. Buse; Zhen Gu

A new glucose-responsive formulation for self-regulated insulin delivery was constructed by packing insulin, glucose-specific enzymes into pH-sensitive polymersome-based nanovesicles assembled by a diblock copolymer. Glucose can passively transport across the bilayer membrane of the nanovesicle and be oxidized into gluconic acid by glucose oxidase, thereby causing a decrease in local pH. The acidic microenvironment causes the hydrolysis of the pH sensitive nanovesicle that in turn triggers the release of insulin in a glucose responsive fashion. In vitro studies validated that the release of insulin from nanovesicle was effectively correlated with the external glucose concentration. In vivo experiments, in which diabetic mice were subcutaneously administered with the nanovesicles, demonstrate that a single injection of the developed nanovesicle facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 5 days.


Molecular Pharmaceutics | 2014

Paclitaxel-loaded N-octyl-O-sulfate chitosan micelles for superior cancer therapeutic efficacy and overcoming drug resistance.

Xiang Jin; Ran Mo; Ya Ding; Wei Zheng; Can Zhang

The nanoparticle-based drug delivery system holds great attraction to overcome or circumvent multidrug resistance (MDR) in cancer to date. In this work, a synthesized amphiphilic graft copolymer, N-octyl-O-sulfate chitosan (NOSC), and its paclitaxel (PTX)-encapsulated micelles (PTX-M) have been systematically investigated on the MDR reversal effect in vitro and in vivo as well as the mechanism of P-glycoprotein (P-gp) inhibition. NOSC in a wide concentration range even above the critical micelle concentration showed an effective effect on inhibiting P-gp-mediated PTX efflux, which was remarkably different from the surfactants and the Pluronic copolymers. Multiple mechanisms were involved in this effect of NOSC, such as stimulating P-gp ATPase, competitively impeding the binding of PTX with P-gp and reducing the fluidity of the cell membrane. PTX-M presented the highest cellular uptake and the lowest efflux rate of PTX, thereby yielding the optimal cytotoxicity on both the human hepatocellular liver carcinoma (HepG2) cells and the multidrug resistance HepG2 (HepG2-P) cells, which resulted from a combination of the inhibiting P-gp effect of NOSC and the bypassing P-gp action of the intact PTX-M. Additionally, PTX-M had superior blood persistence, tumor accumulation, and therapeutic efficacy after intravenous injection into the tumor-bearing mice. Furthermore, it was demonstrated that most of PTX-M as an intact form was delivered at the tumor site, which ensures the synergetic effect of NOSC micelles on drug delivery and P-gp inhibition. The aforementioned results suggested that NOSC micelles presented promising potential as an anticancer drug carrier for enhanced MDR cancer therapy.


Nature Nanotechnology | 2017

Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence

Jingwei Xue; Zekai Zhao; Lei Zhang; Lingjing Xue; Shiyang Shen; Yajing Wen; Zhuoyuan Wei; Lu Wang; Lingyi Kong; Hongbin Sun; Qineng Ping; Ran Mo; Can Zhang

Cell-mediated drug-delivery systems have received considerable attention for their enhanced therapeutic specificity and efficacy in cancer treatment. Neutrophils (NEs), the most abundant type of immune cells, are known to penetrate inflamed brain tumours. Here we show that NEs carrying liposomes that contain paclitaxel (PTX) can penetrate the brain and suppress the recurrence of glioma in mice whose tumour has been resected surgically. Inflammatory factors released after tumour resection guide the movement of the NEs into the inflamed brain. The highly concentrated inflammatory signals in the brain trigger the release of liposomal PTX from the NEs, which allows delivery of PTX into the remaining invading tumour cells. We show that this NE-mediated delivery of drugs efficiently slows the recurrent growth of tumours, with significantly improved survival rates, but does not completely inhibit the regrowth of tumours.

Collaboration


Dive into the Ran Mo's collaboration.

Top Co-Authors

Avatar

Zhen Gu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Tianyue Jiang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Wanyi Tai

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Wujin Sun

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yue Lu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Bellotti

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dennis B. Pacardo

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Frances S. Ligler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jin Di

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge