Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ranabir SinhaRoy is active.

Publication


Featured researches published by Ranabir SinhaRoy.


Diabetes | 2009

Glucagon-Like Peptide 1/Glucagon Receptor Dual Agonism Reverses Obesity in Mice

Alessandro Pocai; Paul E. Carrington; Jennifer R. Adams; Michael Wright; George J. Eiermann; Lan Zhu; Xiaobing Du; Aleksandr Petrov; Guoqiang Jiang; Franklin Liu; Corey Miller; Laurie Tota; Gaochao Zhou; Xiaoping Zhang; Michael M. Sountis; Alessia Santoprete; Elena Capito; Gary G. Chicchi; Nancy A. Thornberry; Elisabetta Bianchi; Antonello Pessi; Donald J. Marsh; Ranabir SinhaRoy

OBJECTIVE Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist. RESEARCH DESIGN AND METHODS We developed a protease-resistant dual GLP1R/GCGR agonist, DualAG, and a corresponding GLP1R-selective agonist, GLPAG, matched for GLP1R agonist potency and pharmacokinetics. The metabolic effects of these two peptides with respect to weight loss, caloric reduction, glucose control, and lipid lowering, were compared upon chronic dosing in diet-induced obese (DIO) mice. Acute studies in DIO mice revealed metabolic pathways that were modulated independent of weight loss. Studies in Glp1r−/− and Gcgr−/− mice enabled delineation of the contribution of GLP1R versus GCGR activation to the pharmacology of DualAG. RESULTS Peptide DualAG exhibits superior weight loss, lipid-lowering activity, and antihyperglycemic efficacy comparable to GLPAG. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were more pronounced upon chronic treatment with DualAG than with GLPAG. Dual receptor agonism also increased fatty acid oxidation and reduced hepatic steatosis in DIO mice. The antiobesity effects of DualAG require activation of both GLP1R and GCGR. CONCLUSIONS Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity.


Journal of Medicinal Chemistry | 2014

Omarigliptin (MK-3102): A Novel Long-Acting DPP-4 Inhibitor for Once-Weekly Treatment of Type 2 Diabetes.

Tesfaye Biftu; Ranabir SinhaRoy; Ping Chen; Xiaoxia Qian; Dennis Feng; Jeffrey T. Kuethe; Giovanna Scapin; Ying Duo Gao; Youwei Yan; Davida Krueger; Annette Bak; George J. Eiermann; Jiafang He; Jason M. Cox; Jacqueline D. Hicks; Kathy Lyons; Huaibing He; Gino Salituro; Sharon Tong; Sangita B. Patel; George A. Doss; Aleksandr Petrov; Joe C. Wu; Shiyao Sherrie Xu; Charles Sewall; Xiaoping Zhang; Bei Zhang; Nancy A. Thornberry; Ann E. Weber

In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.


Obesity | 2012

The Glucagon Receptor Is Involved in Mediating the Body Weight-Lowering Effects of Oxyntomodulin

Jennifer R. Kosinski; James Hubert; Paul E. Carrington; Gary G. Chicchi; James Mu; Corey Miller; Jin Cao; Elisabetta Bianchi; Antonello Pessi; Ranabir SinhaRoy; Donald J. Marsh; Alessandro Pocai

Oxyntomodulin (OXM) is a peptide secreted postprandially from the L‐cells of the gut that has a weak affinity for both the glucagon‐like peptide‐1 receptor (GLP1R) and the glucagon receptor (GCGR). Peripheral administration of OXM in humans and rodents causes weight loss reducing food intake and increasing energy expenditure. It has been suggested that OXM modulates energy intake solely through GLP1R agonism. Because glucagon decreases food intake in rodents and humans, we examined whether activation of the GCGR is involved in the body weight‐lowering effects of OXM. We identified an equipotent GLP1R‐selective peptide agonist that differs from OXM by only one residue (Q3→E, OXMQ3E), but has no significant GCGR agonist activity in vitro and ∼100‐fold reduced ability to stimulate liver glycogenolysis. Chronic treatment of obese mice with OXM and OXMQ3E demonstrated that OXM exhibits superior weight loss and lipid‐lowering efficacy, and antihyperglycemic activity that is comparable to the corresponding GLP1R‐selective agonist. Studies in Glp1r−/− mice and coadministration of OXM and a GCGR antagonist revealed that the antiobesity effect of OXM requires activation of both GLP1R and GCGR. Our data provide new insight into the mechanism of action of OXM and suggest that activation of GCGR is involved in the body weight‐lowering action of OXM.


Biopolymers | 2012

Optimization of co‐agonism at GLP‐1 and glucagon receptors to safely maximize weight reduction in DIO‐rodents

Jonathan Day; Vasily Gelfanov; David L. Smiley; Paul E. Carrington; George J. Eiermann; Gary G. Chicchi; Mark D. Erion; Jas Gidda; Nancy A. Thornberry; Matthias H. Tschöp; Donald J. Marsh; Ranabir SinhaRoy; Richard D. DiMarchi; Alessandro Pocai

The ratio of GLP‐1/glucagon receptor (GLP1R/GCGR) co‐agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet‐induced obese (DIO) mice chronically treated with GLP1R/GCGR co‐agonist peptides differing in their relative receptor agonism. Using glucagon‐based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP‐1 sequences, C‐terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N‐terminal dipeptide. In addition to α‐amino‐isobutyric acid (Aib) substitution at position two, we show that α,α′‐dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site‐specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co‐agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co‐agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co‐agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Journal of Peptide Science | 2011

DPP‐IV‐resistant, long‐acting oxyntomodulin derivatives

Alessia Santoprete; Elena Capito; Paul E. Carrington; Alessandro Pocai; Marco Finotto; Annunziata Langella; Paolo Ingallinella; Karolina Zytko; Simone Bufali; Simona Cianetti; Maria Veneziano; Fabio Bonelli; Lan Zhu; Edith Monteagudo; Donald J. Marsh; Ranabir SinhaRoy; Elisabetta Bianchi; Antonello Pessi

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon‐like peptide 1 (GLP‐1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose‐dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37‐amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP‐1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment‐associated nausea than GLP‐1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half‐life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP‐IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP‐IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon‐like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258–2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use. Copyright


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of benzimidazole pyrrolidinyl amides as prolylcarboxypeptidase inhibitors

Hong C. Shen; Fa-Xiang Ding; Changyou Zhou; Yusheng Xiong; Andreas Verras; Renee M. Chabin; Suoyu Xu; Xinchun Tong; Dan Xie; Urmi R. Bhatt; Margarita Garcia-Calvo; Wayne M. Geissler; Zhu Shen; Dunlu Chen; Ranabir SinhaRoy; Jeffery Hale; James R. Tata; Shirly Pinto; Dong-Ming Shen; Steven L. Colletti

A series of benzimidazole pyrrolidinyl amides containing a piperidinyl group were discovered as novel prolylcarboxypeptidase (PrCP) inhibitors. Low-nanomolar IC(50)s were achieved for several analogs, of which compound 9b displayed modest ex vivo target engagement in eDIO mouse plasma. Compound 9b was also studied in vivo for its effect on weight loss and food intake in an eDIO mouse model and the results will be discussed.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Expression, purification and crystallization of human prolylcarboxypeptidase.

Pravien Abeywickrema; Sangita Patel; Noel Byrne; Ronald E. Diehl; Dawn L. Hall; Rachael E. Ford; Keith Rickert; John C. Reid; Jennifer M. Shipman; Wayne M. Geissler; Kelly Ann D. Pryor; Ranabir SinhaRoy; Stephen Soisson; Kevin J. Lumb; Sujata Sharma

Prolylcarboxypeptidase (PrCP) is a lysosomal serine carboxypeptidase that cleaves a variety of C-terminal amino acids adjacent to proline and has been implicated in diseases such as hypertension and obesity. Here, the robust production, purification and crystallization of glycosylated human PrCP from stably transformed CHO cells is described. Purified PrCP yielded crystals belonging to space group R32, with unit-cell parameters a = b = 181.14, c = 240.13 A, that diffracted to better than 2.8 A resolution.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of a new class of potent prolylcarboxypeptidase inhibitors derived from alanine.

Zhicai Wu; Cangming Yang; Yusheng Xiong; Zhe Feng; Matthew Lombardo; Andreas Verras; Renee M. Chabin; Suoyu Xu; Xinchun Tong; Dan Xie; Mike E. Lassman; Urmi R. Bhatt; Margarita Garcia-Calvo; Wayne M. Geissler; Zhu Shen; Qing Chen; Ranabir SinhaRoy; Jeffrey J. Hale; James R. Tata; Shirly Pinto; Dong-Ming Shen; Steven L. Colletti

Efforts to modify the central proline portion of lead compound 4 lead to the discovery of novel prolylcarboxypeptidase (PrCP) inhibitors. Especially, replacement with alanine afforded compound 19 displaying more potent human and mouse PrCP inhibitory activity than 4 and an overall comparable profile.


Bioorganic & Medicinal Chemistry Letters | 2016

The discovery of novel 5,6,5- and 5,5,6-tricyclic pyrrolidines as potent and selective DPP-4 inhibitors.

Jason M. Cox; Hong D. Chu; Jeffrey T. Kuethe; Ying-Duo Gao; Giovanna Scapin; George Eiermann; Huaibing He; Xiaohua Li; Kathryn A. Lyons; Joseph M. Metzger; Aleksandr Petrov; Joseph K. Wu; Shiyao Xu; Ranabir SinhaRoy; Ann E. Weber; Tesfaye Biftu

Novel potent and selective 5,6,5- and 5,5,6-tricyclic pyrrolidine dipeptidyl peptidase IV (DPP-4) inhibitors were identified. Structure-activity relationship (SAR) efforts focused on improving the intrinsic DPP-4 inhibition potency, increasing protease selectivity, and demonstrating clean ion channel and cytochrome P450 profiles while trying to achieve a pharmacokinetic profile suitable for once weekly dosing in humans.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of benzodihydroisofurans as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase inhibitors.

Hong C. Shen; Fa-Xiang Ding; Jinlong Jiang; Andreas Verras; Renee M. Chabin; Suoyu Xu; Xinchun Tong; Qing Chen; Dan Xie; Mike E. Lassman; Urmi R. Bhatt; Margarita Garcia-Calvo; Wayne M. Geissler; Zhu Shen; Beth Ann Murphy; Judith N. Gorski; Judyann Wiltsie; Ranabir SinhaRoy; Jeffrey J. Hale; Shirly Pinto; Dong-Ming Shen

A series of benzodihydroisofurans were discovered as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase (PrCP) inhibitors. The structure-activity relationship (SAR) is focused on improving PrCP activity and metabolic stability, and reducing plasma protein binding. In the established diet-induced obese (eDIO) mouse model, compound ent-3a displayed target engagement both in plasma and in brain. However, this compound failed to induce significant body weight loss in eDIO mice in a five-day study.

Collaboration


Dive into the Ranabir SinhaRoy's collaboration.

Top Co-Authors

Avatar

Alessandro Pocai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Scapin

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge