Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ranajit K. Banerjee is active.

Publication


Featured researches published by Ranajit K. Banerjee.


Free Radical Biology and Medicine | 1997

Hydroxyl Radical is the Major Causative Factor in Stress-Induced Gastric Ulceration

Dipak Das; Debashis Bandyopadhyay; Mrinalini Bhattacharjee; Ranajit K. Banerjee

The role of the metal-catalyzed production of hydroxyl radicals (OH.) on gastric ulceration caused by restraint-cold stress in rat was studied. Stress causes a 50% increase in the thiobarbituric acid reactive species (TBARS) as a measure of the lipid peroxidation, nearly 70% increase in protein oxidation as measured by its carbonyl content and about 40% decrease in the glutathione content of the fundic stomach, suggesting oxidative damage by stress. Stress also causes a time-dependent increase in the mitochondrial superoxide dismutase activity and a decrease in the peroxidase activity, both of which correlate well with the increase in the severity of ulceration as measured by the ulcer index. Specific OH. scavengers such as benzoate or dimethylsulfoxide (DMSO) and the free radical trap such as alpha-phenyl N-tert-butyl nitrone (PBN) significantly inhibit gastric ulceration suggesting the role of OH. in this oxidative damage. Desferrioxamine (DFO), a nontoxic transition metal ion chelator, protects the mucosa against stress-ulceration dose dependently. Increased level of TBARS and the inactivation of gastric peroxidase are also prevented by DFO or by antioxidants such as glutathione or vitamin E, suggesting the critical role of metal ion and OH. in the oxidative damage. A metal-catalyzed OH. generating system constituted by Cu2+, H2O2 and ascorbate (reducing equivalent of O2-) causes inactivation of the purified gastric peroxidase in vitro, which can be effectively prevented by DFO. The stress-induced activation of the superoxide dismutase is completely blocked by pretreatment with alpha-amanitin indicating an increased synthesis of the enzyme by increased transcription of its m-RNA. Quantitative measurement indicates that stress causes a fivefold increase in the generation of OH., which correlates well with the increase in ulcer index with the progress of stress. The results indicate that the stress-induced gastric ulceration is a consequence of the oxidative damage of the gastric mucosa. This is caused by the OH. generated through the metal-catalyzed Haber-Weiss reaction between O2- and H2O2, the latter being formed by the stimulation of the superoxide dismutase and inactivation of the gastric peroxidase.


Journal of Biological Chemistry | 2003

A Novel Antioxidant and Antiapoptotic Role of Omeprazole to Block Gastric Ulcer through Scavenging of Hydroxyl Radical

Kaushik Biswas; Uday Bandyopadhyay; Ishita Chattopadhyay; Archana Varadaraj; Esahak Ali; Ranajit K. Banerjee

The mechanism of the antiulcer effect of omeprazole was studied placing emphasis on its role to block oxidative damage and apoptosis during ulceration. Dose-response studies on gastroprotection in stress and indomethacin-induced ulcer and inhibition of pylorus ligation-induced acid secretion indicate that omeprazole significantly blocks gastric lesions at lower dose (2.5 mg/kg) without inhibiting acid secretion, suggesting an independent mechanism for its antiulcer effect. Time course studies on gastroprotection and acid reduction also indicate that omeprazole almost completely blocks lesions at 1 h when acid inhibition is partial. The severity of lesions correlates well with the increased level of endogenous hydroxyl radical (⋅OH), which when scavenged by dimethyl sulfoxide causes around 90% reduction of the lesions, indicating that ⋅OH plays a major role in gastric damage. Omeprazole blocks stress-induced increased generation of ⋅OH and associated lipid peroxidation and protein oxidation, indicating that its antioxidant role plays a major part in preventing oxidative damage. Omeprazole also prevents stress-induced DNA fragmentation, suggesting its antiapoptotic role to block cell death during ulceration. The oxidative damage of DNA by ⋅OH generated in vitro is also protected by omeprazole or its analogue, lansoprazole. Lansoprazole when incubated in a ⋅OH-generating system scavenges⋅OH to produce four oxidation products of which the major one in mass spectroscopy shows a molecular ion peak atm/z 385, which is 16 mass units higher than that of lansoprazole (m/z 369). The product shows no additional aromatic proton signal for aromatic hydroxylation in 1H NMR. The product absorbing at 278 nm shows no alkaline shift for phenols, thereby excluding the formation of hydroxylansoprazole. The product is assigned to lansoprazole sulfone formed by the addition of one oxygen atom at the sulfur center following attack by the ⋅OH. Thus, omeprazole plays a significant role in gastroprotection by acting as a potent antioxidant and antiapoptotic molecule.


Molecular and Cellular Biochemistry | 1993

Effect of stress on the antioxidant enzymes and gastric ulceration.

Dipak Das; Ranajit K. Banerjee

The effect of cold-restraint stress on the antioxidant enzymes of the rat gastric mucosa was studied with a view to finding out their role in stress induced gastric ulceration. Histological examination revealed stress induced extensive damage of the surface epithelial cell with lesions extending upto submucosa in some cases. Stress causes time-dependent increase in histamine and pepsin content but decrease in acid content of the gastric fluid with the progress of ulceration (ulcer index) for two hours. The tissue lipid peroxidation was significantly increased as evidenced by accumulation of malondialdehyde. Since lipid peroxidation results from the generation of reactive oxygen species, stress effect was studied on some antioxidant enzymes such as superoxide dismutase, peroxidases and prostaglandin synthetase as a function of time. The time dependent increase in stress ulcer correlates well with the concomitant increase in superoxide dismutase activity and decrease in peroxidase and prostaglandin synthetase activity. This creates a favourable condition for accumulation of endogenous H2O2 and more reactive hydroxyl radical (OH·). Administration of antioxidants such as reduced glutathione or sodium benzoate prior to stress causes significant decrease in ulcer index and lipid peroxidation and protection of gastric peroxidase activity suggesting the involvement of reactive oxygen species in stress induced gastric ulceration. This is supported by thein vitro observation that OH· can also inactivate peroxidase and induce lipid peroxidation. As prostaglandin is known to offer cytoprotection, stress-induced loss of prostaglandin synthetase activity appears to aggravate the oxidative damage caused by reactive oxygen species.


Life Sciences | 2002

Gastroprotective effect of Neem (Azadirachta indica) bark extract: Possible involvement of H+-K+-ATPase inhibition and scavenging of hydroxyl radical

Uday Bandyopadhyay; Kausik Biswas; Ratna Chatterjee; Debashis Bandyopadhyay; Ishita Chattopadhyay; Chayan K. Ganguly; Tapan Chakraborty; Kunal Bhattacharya; Ranajit K. Banerjee

The antisecretory and antiulcer effects of aqueous extract of Neem (Azadirachta indica) bark have been studied along with its mechanism of action, standardisation and safety evaluation. The extract can dose dependently inhibit pylorus-ligation and drug (mercaptomethylimidazole)-induced acid secretion with ED(50) value of 2.7 and 2 mg Kg(-1) b.w. respectively. It is highly potent in dose-dependently blocking gastric ulcer induced by restraint-cold stress and indomethacin with ED(50) value of 1.5 and 1.25 mg Kg(-1) b.w. respectively. When compared, bark extract is equipotent to ranitidine but more potent than omeprazole in inhibiting pylorus-ligation induced acid secretion. In a stress ulcer model, it is more effective than ranitidine but almost equipotent to omeprazole. Bark extract inhibits H(+)-K(+)-ATPase activity in vitro in a concentration dependent manner similar to omeprazole. It offers gastroprotection against stress ulcer by significantly preventing adhered mucus and endogenous glutathione depletion. It prevents oxidative damage of the gastric mucosa by significantly blocking lipid peroxidation and by scavenging the endogenous hydroxyl radical ((z.rad;)OH)-the major causative factor for ulcer. The (z.rad;)OH-mediated oxidative damage of human gastric mucosal DNA is also protected by the extract in vitro. Bark extract is more effective than melatonin, vitamin E, desferrioxamine and alpha-phenyl N-tert butylnitrone, the known antioxidants having antiulcer effect. Standardisation of the bioactive extract by high pressure liquid chromatography indicates that peak 1 of the chromatogram coincides with the major bioactive compound, a phenolic glycoside, isolated from the extract. The pharmacological effects of the bark extract are attributed to a phenolic glycoside which is apparently homogeneous by HPLC and which represents 10% of the raw bark extract. A single dose of 1g of raw extract per kg b.w. (mice) given in one day and application of 0.6g raw extract per kg b.w. per day by oral route over 15 days to a cumulative dose of 9g per kg was well tolerated and was below the LD(50). It is also well tolerated by rats with no significant adverse effect. It is concluded that Neem bark extract has therapeutic potential for the control of gastric hyperacidity and ulcer.


Journal of Pineal Research | 2000

Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical.

Debashis Bandyopadhyay; Kausik Biswas; Uday Bandyopadhyay; Russel J. Reiter; Ranajit K. Banerjee

The antiulcer effect of melatonin on gastric lesions caused by restraint‐cold stress or by indomethacin (IMN) was studied with the intent of determining the mechanism of action of the indole. Melatonin dose‐dependently prevents both stress and IMN‐induced gastric damage with around 90% inhibition at a dose of 60 mg per kg BW. When compared with already‐marketed antiulcer drugs, such as ranitidine and omeprazole, melatonin was found to be more effective than ranitidine but less effective than omeprazole in preventing stress ulcer. When compared with other antioxidants, melatonin was more potent than glutathione and essentially equipotent to α‐tocopherol in blocking stress‐induced ulcer. As stress‐induced gastric lesions are mainly caused by oxidative damage due to hydroxyl radicals (OH), the effect of melatonin in scavenging the OH generated during stress conditions, as well as in an in vitro model system, was studied. The results indicate that melatonin at the dose of 60 mg per kg BW caused an 88% reduction of endogenous OH during stress. Melatonin was also highly effective in scavenging OH generated in vitro by a Cu2+‐ascorbate system. In this case, melatonin at 100 μM reduced OH by 80%. Melatonin was also found to be a more potent radical scavenger than benzoate, a known OH scavenger. The results indicate that melatonin prevents stress‐induced gastric lesions by scavenging the endogenous OH. As it also protects against IMN‐induced gastric damage, it probably also offers gastroprotection by maintaining endogenous prostaglandin levels.


Molecular and Cellular Biochemistry | 2003

Smoking and the pathogenesis of gastroduodenal ulcer--recent mechanistic update.

Pallab Maity; Kaushik Biswas; Somenath Roy; Ranajit K. Banerjee; Uday Bandyopadhyay

Peptic ulcer is a common disorder of gastrointestinal system and its pathogenesis is multifactorial, where smoking and nicotine have significant adverse effects. Smoking and chronic nicotine treatment stimulate basal acid output which is more pronounced in the smokers having duodenal ulcer. This increased gastric acid secretion is mediated through the stimulation of H2-receptor by histamine released after mast cell degranulation and due to the increase of the functional parietal cell volume or secretory capacity in smokers. Smoking and nicotine stimulate pepsinogen secretion also by increasing chief cell number or with an enhancement of their secretory capacity. Long-term nicotine treatment in rats also significantly decreases total mucus neck cell population and neck-cell mucus volume. Smoking also increases bile salt reflux rate and gastric bile salt concentration thereby increasing duodenogastric reflux that raises the risk of gastric ulcer in smokers. Smoking and nicotine not only induce ulceration, but they also potentiate ulceration caused by H. pylori, alcohol, nonsteroidal anti-inflammatory drugs or cold restrain stress. Polymorphonuclear neutrophils (PMN) play an important role in ulcerogenesis through oxidative damage of the mucosa by increasing the generation of reactive oxygen intermediates (ROI), which is potentiated by nicotine and smoking. Nicotine by a cAMP-protein kinase A signaling system elevates the endogenous vasopressin level, which plays an aggressive role in the development of gastroduodenal lesions. Smoking increases production of platelet activating factor (PAF) and endothelin, which are potent gastric ulcerogens. Cigarette smoking and nicotine reduce the level of circulating epidermal growth factor (EGF) and decrease the secretion of EGF from the salivary gland, which are necessary for gastric mucosal cell renewal. Nicotine also decreases prostaglandin generation in the gastric mucosa of smokers, thereby making the mucosa susceptible to ulceration. ROI generation and ROI-mediated gastric mucosal cell apoptosis are also considered to be important mechanism for aggravation of ulcer by cigarette smoke or nicotine. Both smoking and nicotine reduce angiogenesis in the gastric mucosa through inhibition of nitric oxide synthesis thereby arresting cell renewal process. Smoking or smoke extract impairs both spontaneous and drug-induced healing of ulcer. Smoke extract also inhibits gastric mucosal cell proliferation by reducing ornithine decarboxylase activity, which synthesises growth-promoting polyamines. It is concluded that gastric mucosal integrity is maintained by an interplay of some aggressive and defensive factors controlling apoptotic cell death and cell proliferation and smoking potentiates ulcer by disturbing this balance.


Current Molecular Medicine | 2001

Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: protection by melatonin.

Debashis Bandyopadhyay; Kaushik Biswas; Mrinalini Bhattacharyya; Russel J. Reiter; Ranajit K. Banerjee

Uncontrolled hydrochloric acid secretion and ulceration of the stomach mucosa due to various factors are serious global problems. Although the mechanism of acid secretion from the parietal cell is now well understood, the processes involved in gastric ulceration are still not clear. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and due to use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species, especially the hydroxyl radical. A number of excellent drugs have proven useful in controlling hyperacidity and ulceration but their long-term use is associated with disturbing side-effects. Hence, the search is still on to find a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a therapeutic agent to reduce gastric hyperacidity and ulcers. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal secretory product, in protecting against gastric lesions. In experimental studies, melatonin has been shown to be effective in reducing mucosal breakdown and ulcer formation in a wide variety of situations. Additionally, the low toxicity of melatonin supports further investigation of this molecule as a gastroprotective agent. Finally, we include a commentary on how melatonin research with respect to gastric pathophysiology can move forward with a view of eventually using this indole as a therapeutic agent to control gastric ulceration in humans.


Toxicology Letters | 2002

Extrathyroidal actions of antithyroid thionamides

Uday Bandyopadhyay; Kausik Biswas; Ranajit K. Banerjee

Some compounds having thionamide structure inhibit thyroid functions. Such antithyroid thionamides include mercaptomethylimidazole (methimazole), thiourea and propylthiouracil, of which mercaptomethylimidazole is widely used to treat hyperthyroidism. Undesirable side effects develop from these drugs due to extrathyroidal actions. Antithyroid thionamides inhibit lactoperoxidase which contributes to the antibacterial activities of a number of mammalian exocrine gland secretions that protect a variety of mucosal surfaces. These drugs stimulate both gastric acid and pepsinogen secretions, thereby augmenting the severity of gastric ulcers and preventing wound healing. Increased gastric acid secretion is partially due to the H2 receptor activation, and also through the stimulation of the parietal cell by intracellular generation of H2O2 following inactivation of the gastric peroxidase-catalase system. Severe abnormalities may develop in blood cells and the immune system after thionamide therapy. It causes agranulocytosis, aplastic anemia, and purpura along with immune suppression. Olfactory and auditory systems are also affected by these drugs. Thionamide affects the sense of smell and taste and also causes loss of hearing. It binds to the Bowmans glands in the olfactory mucosa and causes extensive lesion in the olfactory mucosa. Thionamides also affect gene expression and modulate the functions of some cell types. A brief account of the chemistry and metabolism of antithyroid thionamides, along with their biological actions are presented.


Biochimica et Biophysica Acta | 1990

Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity

Ranajit K. Banerjee

The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.


Free Radical Biology and Medicine | 2002

Critical role of an endogenous gastric peroxidase in controlling oxidative damage in H. pylori-mediated and nonmediated gastric ulcer

Mrinalini Bhattacharjee; Samir Bhattacharjee; Arnab Gupta; Ranajit K. Banerjee

The objective of the present study is to delineate the mechanism of oxidative damage in human gastric ulcerated mucosa despite the presence of some antioxidant enzymes. We report for the first time the critical role of an endogenous peroxidase, a major H(2)O(2) metabolizing enzyme, in controlling oxidative damage in gastric mucosa. Human gastric mucosa contains a highly active peroxidase in addition to the myeloperoxidase contributed by neutrophil. In both non-Helicobacter pylori (H. pylori)- and H. pylori-mediated gastric ulcer, when myeloperoxidase level increases due to neutrophil accumulation, gastric peroxidase (GPO) level decreases significantly. Moreover, gastric ulcer is associated with oxidative damage of the mucosa as evidenced by significant increase in lipid peroxidation, protein oxidation, and thiol depletion indicating accumulation of reactive oxygen metabolites (ROM). Mucosal total superoxide dismutase (Mn and Cu-Zn SOD) level also decreases significantly leading to increased accumulation of O(2)(*-). To investigate the plausible ROM-mediated inactivation of the GPO during ulceration, the enzyme was partially purified from the mucosa. When exposed to an in vitro ROM generating system, using Cu(2+), ascorbate, and H(2)O(2,) the enzyme gets inactivated, which is dependent on Cu(2+), ascorbate, or H(2)O(2). Insensitivity to SOD excludes inactivation by O(2)(*-). However, complete protection by catalase indicates that H(2)O(2) is essential for inactivation. Sensitivity to EDTA and hydroxyl radical *OH) scavengers indicates that GPO is inactivated most probably by *OH generated from H(2)O(2). We propose that GPO is inactivated in vivo by ROM generated by activated neutrophil. This leads to further accumulation of endogenous H(2)O(2) to cause more oxidative damage to aggravate the ulcer.

Collaboration


Dive into the Ranajit K. Banerjee's collaboration.

Top Co-Authors

Avatar

Uday Bandyopadhyay

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Debashis Bandyopadhyay

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

D. K. Bhattacharyya

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Ratna Chatterjee

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Subrata Adak

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asoke G. Datta

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Ishita Chattopadhyay

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Kausik Biswas

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Tapan Chakraborty

Indian Institute of Chemical Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge