Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subrata Adak is active.

Publication


Featured researches published by Subrata Adak.


Journal of Biological Chemistry | 2000

Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase: Implications for mechanism

Subrata Adak; Qian Wang; Dennis J. Stuehr

We studied catalysis by tetrahydrobiopterin (H4B)-free neuronal nitric-oxide synthase (nNOS) to understand how heme and H4B participate in nitric oxide (NO) synthesis. H4B-free nNOS catalyzed Arg oxidation toN ω-hydroxy-l-Arg (NOHA) and citrulline in both NADPH- and H2O2-driven reactions. Citrulline formation was time- and enzyme concentration-dependent but was uncoupled relative to NADPH oxidation, and generated nitrite and nitrate without forming NO. Similar results were observed when NOHA served as substrate. Steady-state and stopped-flow spectroscopy with the H4B-free enzyme revealed that a ferrous heme-NO complex built up after initiating catalysis in both NADPH- and H2O2-driven reactions, consistent with formation of nitroxyl as an immediate product. This differed from the H4B-replete enzyme, which formed a ferric heme-NO complex as an immediate product that could then release NO. We make the following conclusions. 1) H4B is not essential for Arg oxidation by nNOS, although it helps couple NADPH oxidation to product formation in both steps of NO synthesis. Thus, the NADPH- or H2O2-driven reactions form common heme-oxy species that can react with substrate in the presence or absence of H4B. 2) The sole essential role of H4B is to enable nNOS to generate NO instead of nitroxyl. On this basis we propose a new unified model for heme-dependent oxygen activation and H4B function in both steps of NO synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans

Subrata Adak; Alexandrine M. Bilwes; Koustubh Panda; David J. Hosfield; Kulwant S. Aulak; John F. McDonald; John A. Tainer; Elizabeth D. Getzoff; Brian R. Crane; Dennis J. Stuehr

We cloned, expressed, and characterized a hemeprotein from Deinococcus radiodurans (D. radiodurans NO synthase, deiNOS) whose sequence is 34% identical to the oxygenase domain of mammalian NO synthases (NOSoxys). deiNOS was dimeric, bound substrate Arg and cofactor tetrahydrobiopterin, and had a normal heme environment, despite its missing N-terminal structures that in NOSoxy bind Zn2+ and tetrahydrobiopterin and help form an active dimer. The deiNOS heme accepted electrons from a mammalian NOS reductase and generated NO at rates that met or exceeded NOSoxy. Activity required bound tetrahydrobiopterin or tetrahydrofolate and was linked to formation and disappearance of a typical heme-dioxy catalytic intermediate. Thus, bacterial NOS-like proteins are surprisingly similar to mammalian NOSs and broaden our perspective of NO biochemistry and function.


Journal of Biological Chemistry | 1999

Role of Reductase Domain Cluster 1 Acidic Residues in Neuronal Nitric-oxide Synthase CHARACTERIZATION OF THE FMN-FREE ENZYME

Subrata Adak; Sanjay Ghosh; Husam M. Abu-Soud; Dennis J. Stuehr

The nNOS reductase domain is homologous to cytochrome P450 reductase, which contains two conserved clusters of acidic residues in its FMN module that play varied roles in its electron transfer reactions. To study the role of nNOS reductase domain cluster 1 acidic residues, we mutated two conserved acidic (Asp918 and Glu919) and one conserved aromatic residue (Phe892), and investigated the effect of each mutation on flavin binding, conformational change, electron transfer reactions, calmodulin regulation, and catalytic activities. Each mutation destabilized FMN binding without significantly affecting other aspects including substrate, cofactor or calmodulin binding, or catalytic activities upon FMN reconstitution, indicating the mutational effect was restricted to the FMN module. Characterization of the FMN-depleted mutants showed that bound FMN was essential for reduction of the nNOS heme or cytochrome c, but not for ferricyanide or dichlorophenolindolphenol, and established that the electron transfer path in nNOS is NADPH to FAD to FMN to heme. Steady-state and stopped-flow kinetic analysis revealed a novel role for bound FMN in suppressing FAD reduction by NADPH. The suppression could be relieved either by FMN removal or calmodulin binding. Calmodulin binding induced a conformational change that was restricted to the FMN module. This increased the rate of FMN reduction and triggered electron transfer to the heme. We propose that the FMN module of nNOS is the key positive or negative regulator of electron transfer at all points in nNOS. This distinguishes nNOS from other related flavoproteins, and helps explain the mechanism of calmodulin regulation.


Journal of Biological Chemistry | 1999

Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition.

Subrata Adak; Carol Crooks; Qian Wang; Brian R. Crane; John A. Tainer; Elizabeth D. Getzoff; Dennis J. Stuehr

The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in π-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independentN-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin. Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.


Journal of Biological Chemistry | 1999

Mutational Analysis of the Tetrahydrobiopterin-binding Site in Inducible Nitric-oxide Synthase

Sanjay Ghosh; Dennis W. Wolan; Subrata Adak; Brian R. Crane; Nyoun Soo Kwon; John A. Tainer; Elizabeth D. Getzoff; Dennis J. Stuehr

Inducible nitric-oxide synthase (iNOS) is a hemeprotein that requires tetrahydrobiopterin (H4B) for activity. The influence of H4B on iNOS structure-function is complex, and its exact role in nitric oxide (NO) synthesis is unknown. Crystal structures of the mouse iNOS oxygenase domain (iNOSox) revealed a unique H4B-binding site with a high degree of aromatic character located in the dimer interface and near the heme. Four conserved residues (Arg-375, Trp-455, Trp-457, and Phe-470) engage in hydrogen bonding or aromatic stacking interactions with the H4B ring. We utilized point mutagenesis to investigate how each residue modulates H4B function. All mutants contained heme ligated to Cys-194 indicating no deleterious effect on general protein structure. Ala mutants were monomers except for W457A and did not form a homodimer with excess H4B and Arg. However, they did form heterodimers when paired with a full-length iNOS subunit, and these were either fully or partially active regarding NO synthesis, indicating that preserving residue identities or aromatic character is not essential for H4B binding or activity. Aromatic substitution at Trp-455 or Trp-457 generated monomers that could dimerize with H4B and Arg. These mutants bound Arg and H4B with near normal affinity, but Arg could not displace heme-bound imidazole, and they had NO synthesis activities lower than wild-type in both homodimeric and heterodimeric settings. Aromatic substitution at Phe-470 had no significant effects. Together, our work shows how hydrogen bonding and aromatic stacking interactions of Arg-375, Trp-457, Trp-455, and Phe-470 influence iNOSox dimeric structure, heme environment, and NO synthesis and thus help modulate the multiple effects of H4B.


Journal of Biological Chemistry | 2000

Molecular Basis for Hyperactivity in Tryptophan 409 Mutants of Neuronal NO Synthase

Subrata Adak; Qian Wang; Dennis J. Stuehr

A ferrous heme-NO complex builds up in rat neuronal NO synthase during catalysis and lowers its activity. Mutation of a tryptophan located directly below the heme (Trp409) to Phe or Tyr causes hyperactive NO synthesis and less heme-NO complex buildup in the steady state (Adak, S., Crooks, C., Wang, Q., Crane, B. R., Tainer, J. A., Getzoff, E. D., and Stuehr, D. J. (1999) J. Biol. Chem. 274, 26907–26911). To understand the mechanism, we used conventional and stopped flow spectroscopy to compare kinetics of heme-NO complex formation, enzyme activity prior to and after complex formation, NO binding affinity, NO complex stability, and its reaction with O2 in mutants and wild type nNOS. During the initial phase of NO synthesis, heme-NO complex formation was 3 and 5 times slower in W409F and W409Y, and their rates of NADPH oxidation were 50 and 30% that of wild type, probably due to slower heme reduction. NO complex formation slowed NADPH oxidation in the wild type by 7-fold but reduced mutant activities less than 2-fold, giving mutants higher final activities. NO binding kinetics were similar among mutants and wild type, although in ferrous W409Y (and to a lesser extent W409F) the 436-nm NO complex converted to a 417-nm NO complex with time. Oxidation of the ferrous heme-NO complex to ferric enzyme was 7 times faster in Trp409 mutants than in wild type. Thus, mutant hyperactivity derives from slower formation and faster decay of the heme-NO complex. Together, these minimize partitioning into the NO-bound form.


Journal of Biological Chemistry | 2001

Chimeras of Nitric-oxide Synthase Types I and III Establish Fundamental Correlates between Heme Reduction, Heme-NO Complex Formation, and Catalytic Activity

Subrata Adak; Kulwant S. Aulak; Dennis J. Stuehr

Neuronal nitric-oxide synthase (nNOS or NOS I) and endothelial NOS (eNOS or NOS III) differ widely in their reductase and nitric oxide (NO) synthesis activities, electron transfer rates, and propensities to form a heme-NO complex during catalysis. We generated chimeras by swapping eNOS and nNOS oxygenase domains to understand the basis for these differences and to identify structural elements that determine their catalytic behaviors. Swapping oxygenase domains did not alter domain-specific catalytic functions (cytochrome c reduction or H2O2-supportedN ω-hydroxy-l-arginine oxidation) but markedly affected steady-state NO synthesis and NADPH oxidation compared with native eNOS and nNOS. Stopped-flow analysis showed that reductase domains either maintained (nNOS) or slightly exceeded (eNOS) their native rates of heme reduction in each chimera. Heme reduction rates were found to correlate with the initial rates of NADPH oxidation and heme-NO complex formation, with the percentage of heme-NO complex attained during the steady state, and with NO synthesis activity. Oxygenase domain identity influenced these parameters to a lesser degree. We conclude: 1) Heme reduction rates in nNOS and eNOS are controlled primarily by their reductase domains and are almost independent of oxygenase domain identity. 2) Heme reduction rate is the dominant parameter controlling the kinetics and extent of heme-NO complex formation in both eNOS and nNOS, and thus it determines to what degree heme-NO complex formation influences their steady-state NO synthesis, whereas oxygenase domains provide minor but important influences. 3) General principles that relate heme reduction rate, heme-NO complex formation, and NO synthesis are not specific for nNOS but apply to eNOS as well.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity

Subrata Adak; Manisha Sharma; Abigail L. Meade; Dennis J. Stuehr

Nitric oxide synthases (NOSs) are flavoheme enzymes that contain a ferredoxin:NADP+-reductase (FNR) module for binding NADPH and FAD and are unusual because their electron transfer reactions are controlled by the Ca2+-binding protein calmodulin. A conserved aromatic residue in the FNR module of NOS shields the isoalloxazine ring of FAD and is known to regulate NADPH binding affinity and specificity in related flavoproteins. We mutated Phe-1395 (F1395) in neuronal NOS to Tyr and Ser and tested their effects on nucleotide coenzyme specificity, catalytic activities, and electron transfer in the absence or presence of calmodulin. We found that the aromatic side chain of F1395 controls binding specificity with respect to NADH but does not greatly affect affinity for NADPH. Measures of flavin and heme reduction kinetics, ferricyanide and cytochrome c reduction, and NO synthesis established that the aromatic side chain of F1395 is required to repress electron transfer into and out of the flavins of neuronal NOS in the calmodulin-free state, and is also required for calmodulin to fully relieve this repression. We speculate that the phenyl side chain of F1395 is part of a conformational trigger mechanism that negatively or positively controls NOS electron transfer depending on the presence of calmodulin. Such use of the conserved aromatic residue broadens our understanding of flavoprotein structure and regulation.


Journal of Inorganic Biochemistry | 2001

A proximal tryptophan in NO synthase controls activity by a novel mechanism

Subrata Adak; Dennis J. Stuehr

The heme of neuronal nitric oxide synthase (nNOS) participates in O2 activation but also binds self-generated NO, resulting in reversible feedback inhibition. We utilized mutagenesis to investigate if a conserved tryptophan residue (Trp409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Mutants W409F and W409Y were hyperactive regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg electron flux through the heme was slower in the W409 mutants than in wild-type. However, less NO complex accumulated during NO synthesis by the mutants. To understand the mechanism, we compared the kinetics of heme-NO complex formation, rate of heme reduction, kcat prior to and after NO complex formation, NO binding affinity, NO complex stability, and its reaction with O2. During the initial phase of NO synthesis, heme-NO complex formation was three and five times slower in W409F and W409Y, which corresponded to a slower heme reduction. NO complex formation inhibited wild-type turnover 7-fold but reduced mutant turnover less than 2-fold, giving mutants higher steady-state activities. NO binding kinetics were similar among mutants and wild type, although mutants also formed a 417 nm ferrous-NO complex. Oxidation of ferrous-NO complex was seven times faster in mutants than in wild type. We conclude that mutant hyperactivity primarily derives from slower heme reduction and faster oxidation of the heme-NO complex by O2. In this way Trp409 mutations minimize NO feedback inhibition by limiting buildup of the ferrous-NO complex during the steady state. Conservation of W409 among NOS suggests that this proximal Trp may regulate NO feedback inhibition and is important for enzyme physiologic function.


Journal of Biological Chemistry | 2004

Update on Mechanism and Catalytic Regulation in the NO Synthases

Dennis J. Stuehr; Jérôme Santolini; Zhi Qiang Wang; Chin Chuan Wei; Subrata Adak

Collaboration


Dive into the Subrata Adak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian R. Crane

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Tainer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge