Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall F. Howard is active.

Publication


Featured researches published by Randall F. Howard.


Vaccine | 2009

Optimized subunit vaccine protects against experimental leishmaniasis.

Sylvie Bertholet; Yasuyuki Goto; Lauren Carter; Ajay Bhatia; Randall F. Howard; Darrick Carter; Rhea N. Coler; Thomas S. Vedvick; Steven G. Reed

Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.


Clinical and Vaccine Immunology | 2011

KSAC, the First Defined Polyprotein Vaccine Candidate for Visceral Leishmaniasis

Yasuyuki Goto; Ajay Bhatia; Vanitha S. Raman; Hong Liang; Raodoh Mohamath; Alessandro Picone; Silvia E. Z. Vidal; Thomas S. Vedvick; Randall F. Howard; Steven G. Reed

ABSTRACT A subunit vaccine using a defined antigen(s) may be one effective solution for controlling leishmaniasis. Because of genetic diversity in target populations, including both dogs and humans, a multiple-antigen vaccine will likely be essential. However, the cost of a vaccine to be used in developing countries must be considered. We describe herein a multiantigen vaccine candidate comprised of antigens known to be protective in animal models, including dogs, and to be recognized by humans immune to visceral leishmaniasis. The polyprotein (KSAC) formulated with monophosphoryl lipid A, a widely used adjuvant in human vaccines, was found to be immunogenic and capable of inducing protection against Leishmania infantum, responsible for human and canine visceral leishmaniasis, and against L. major, responsible for cutaneous leishmaniasis. The results demonstrate the feasibility of producing a practical, cost-effective leishmaniasis vaccine capable of protecting both humans and dogs against multiple Leishmania species.


Vaccine | 2010

Treatment of canine visceral leishmaniasis by the vaccine Leish-111f+MPL-SE

Joelma Trigo; Melissa Abbehusen; Eduardo Martins Netto; Maria Nakatani; Geraldo Pedral-Sampaio; Robson Silva de Jesus; Yasuyuki Goto; Jeffrey A. Guderian; Randall F. Howard; Steven G. Reed

Immunotherapy of canine visceral leishmaniasis (CVL) may provide an alternative to both marginally effective chemotherapy and undesired euthanasia of infected dogs and could have a great impact not only on animal welfare, but also on control of human disease. Therefore, we examined the potential immunotherapeutic efficacy of the subunit vaccine Leish-111f+MPL-SE, which has undergone rigorous preclinical testing and been demonstrated safe in human clinical trials. Two separate trials were performed in Salvador, Brazil, to evaluate the vaccine for therapeutic efficacy against CVL caused by natural infection: an Open Trial and a Blinded Trial. In the Open Trial 59 dogs with clinically active CVL were sequentially allocated to four groups: group 1 received Leish-111f+MPL-SE; group 2 was treated with Glucantime; group 3 received a combination of the vaccine and Glucantime; and group 4 was given no treatment. At the 6-month assessment, the 13 non-treated dogs had either died or showed no clinical improvement. In contrast, most dogs in groups 1-3 showed initial improvement (100%, 80%, and 92%, respectively). Upon evaluation for a mean of 36 months after therapy, the following cure rates were observed: 75% for group 1 dogs (exact 95% confidence interval [CI] 43-95%), 64% for group 2 dogs (exact 95% CI 31-89%), and 50% for group 3 dogs (exact 95% CI 19-81%). Therapeutic efficacy of the Leish-111f+MPL-SE vaccine was reconfirmed in a subsequent Blinded Trial. The vaccine was effective for mild cases of CVL and was compromised in dogs with severe disease. Although further studies are required to understand mechanisms of action, the Leish-111f+MPL-SE vaccine is a promising tool to control VL in both dogs and humans.


Vaccine | 2011

A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 – A GLURP–MSP3 fusion protein malaria vaccine candidate

Susana Lousada-Dietrich; Prajakta S. Jogdand; Søren Jepsen; Vera V. Pinto; Sisse B. Ditlev; Michael Christiansen; Severin Olesen Larsen; Christopher B. Fox; Vanitha S. Raman; Randall F. Howard; Thomas S. Vedvick; Gregory C. Ireton; Darrick Carter; Steven G. Reed; Michael Theisen

GMZ2 adjuvanted by aluminum hydroxide is a candidate malaria vaccine that has successfully passed phase 1 clinical testing in adult German and Gabonese volunteers and Gabonese children under five. Here we report a preclinical study screening a series of adjuvant vehicles and Toll-like receptor (TLR) agonists in CB6F1 mice to identify an improved formulation of GMZ2 suitable for further human clinical studies. GMZ2 formulated in an oil-in-water emulsion plus the synthetic TLR4 agonist GLA elicits the highest (a) vaccine-specific IgG2a and total IgG titers, (b) parasite-specific IFA titers, (c) levels of Type 1 cytokine responses (IFN-γ), and (d) number of long-lived-plasma cells (LLPC) secreting antibodies against both the GMZ2 fusion and its two components. Thus, GLA helps to elicit a vaccine-specific Type 1 antibody profile together with high levels of LLPC, both of which are thought to be essential for the development of long-term protective immunity against clinical malaria.


Vaccine | 2009

Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection

Yasuyuki Goto; Ajay Bhatia; Vanitha S. Raman; Silvia E. Z. Vidal; Sylvie Bertholet; Rhea N. Coler; Randall F. Howard; Steven G. Reed

The enzyme sterol 24-c-methyltranferase (SMT) is required for the biosynthesis of ergosterol, the major membrane sterol in Leishmania parasites. SMT and ergosterol are not found in mammals, so this protein may be an attractive target for anti-leishmanial vaccines and drugs. We have previously demonstrated that SMT from L. infantum, which causes visceral leishmaniasis, is a protective antigen against this parasite. Because this protein is highly conserved among Leishmania species, we evaluated the potential of SMT to cross-protect against a different form of leishmaniasis. Here, we show that immunization with L. infantum SMT, formulated with monophosphoryl lipid A in stable emulsion (MPL-SE), protects mice from cutaneous leishmaniasis caused by L. major. In BALB/c mice the vaccine preparation induced antigen-specific multi-functional CD4(+) T cells capable of producing IFN-gamma, IL-2, and/or TNF-alpha upon antigen re-exposure, and MPL-SE was indispensable to direct immune responses to SMT towards Th1. Mice immunized with the SMT/MPL-SE vaccine developed significantly smaller lesions following ear challenge with L. major. These results suggest that SMT is a promising vaccine antigen for multiple forms of leishmaniasis.


Infection and Immunity | 2011

Evaluation of the Safety and Immunogenicity in Rhesus Monkeys of a Recombinant Malaria Vaccine for Plasmodium vivax with a Synthetic Toll-Like Receptor 4 Agonist Formulated in an Emulsion‡

Joanne M. Lumsden; Sathit Pichyangkul; Utaiwan Srichairatanakul; Kosol Yongvanitchit; Amporn Limsalakpetch; Saule Nurmukhambetova; Jennifer Klein; Sylvie Bertholet; Thomas S. Vedvick; Steven G. Reed; Jetsumon Sattabongkot; Jason W. Bennett; Mark E. Polhemus; Christian F. Ockenhouse; Randall F. Howard; Anjali Yadava

ABSTRACT Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4+ T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.


Vaccine | 2012

Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells.

Laura P. Schneider; Antoinet J. Schoonderwoerd; Magdalini Moutaftsi; Randall F. Howard; Steven G. Reed; Esther C. de Jong; Marcel B. M. Teunissen

The natural TLR4 agonist lipopolysaccharide (LPS) has notable adjuvant activity. However, it is not useful as a vaccine adjuvant due to its toxicity. Glucopyranosyl lipid A (GLA) is a synthetic derivative of the lipid A tail of LPS with limited cytotoxicity, but strong potential to induce immune responses in mice, guinea pigs, non-human primates, and humans. In this study we determined how this synthetic TLR4 agonist affects the function of different subsets of human skin dendritic cells (DCs). The effect of GLA in an aqueous formulation (GLA-AF) or in an oil-in-water emulsion (GLA-SE) was compared to that of LPS and TLR3 agonist poly(I:C) using a human skin explant model with intradermal injections for the administration of the agonists. Intradermal injection of GLA-SE or LPS, but not GLA-AF, enhanced the emigration of CD1a(high)/langerin(+) Langerhans cells (LCs), but not dermal DCs (DDCs). LCs and CD14(-) DDCs exhibited an enhanced mature phenotype following intradermal administration of either of the two GLA formulations tested, similar to DCs that emigrated from LPS-injected skin. However, only injection of GLA-SE resulted in a significant increase in the production of the wide range of cytokines that is observed with LPS. Moreover, DCs that emigrated from GLA-SE-injected skin induced stronger CD4(+) T-cell activation, as indicated by a more pronounced T-cell proliferation, than DCs from skin injected with GLA-AF or LPS. Altogether, our data show that GLA-SE has a notable potency to stimulate the function of skin DCs, indicating that GLA-SE may be a good candidate as adjuvant for vaccines administered via the intradermal route.


Vaccine | 2012

Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice.

Joanne M. Lumsden; Saule Nurmukhambetova; Jennifer Klein; Jetsumon Sattabongkot; Jason W. Bennett; Sylvie Bertholet; Christopher B. Fox; Steven G. Reed; Christian F. Ockenhouse; Randall F. Howard; Mark E. Polhemus; Anjali Yadava

Plasmodium vivax is the major cause of malaria outside of sub-Saharan Africa and causes morbidity and results in significant economic impact in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study, groups of C57BL/6J mice were immunized subcutaneously three times with VMP001 emulsified with synthetic TLR4 (GLA) or TLR7/8 (R848) agonist in stable emulsion (SE), a combination of the TLR4 and TLR7/8 agonists, or SE alone. Sera and splenocytes were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of mice generated high titers of anti-P. vivax IgG antibodies as detected by ELISA and immunofluorescence assay. GLA-SE promoted a shift in the antibody response to a Th1 profile, as demonstrated by the change in IgG2c/IgG1 ratio. In addition, GLA-SE induced a strong cellular immune response characterized by multi-functional, antigen-specific CD4(+) T cells secreting IL-2, TNF and IFN-γ. In contrast, mice immunized with SE or R848-SE produced low numbers of antigen-specific CD4(+) T cells, and these T cells secreted IL-2 and TNF, but not IFN-γ. Finally, R848-SE did not enhance the immune response compared to GLA-SE alone. Based on these results, we conclude that the combination of VMP001 and GLA-SE is highly immunogenic in mice and may serve as a potential second-generation vaccine candidate against vivax malaria.


PLOS Neglected Tropical Diseases | 2012

KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

Regis Gomes; Clarissa Teixeira; Fabiano Oliveira; Phillip G. Lawyer; Dia-Eldin Elnaiem; Claudio Meneses; Yasuyuki Goto; Ajay Bhatia; Randall F. Howard; Steven G. Reed; Jesus G. Valenzuela; Shaden Kamhawi

Background Recombinant KSAC and L110f are promising Leishmania vaccine candidates. Both antigens formulated in stable emulsions (SE) with the natural TLR4 agonist MPL® and L110f with the synthetic TLR4 agonist GLA in SE protected BALB/c mice against L. major infection following needle challenge. Considering the virulence of vector-transmitted Leishmania infections, we vaccinated BALB/c mice with either KSAC+GLA-SE or L110f+GLA-SE to assess protection against L. major transmitted via its vector Phlebotomus duboscqi. Methods Mice receiving the KSAC or L110f vaccines were challenged by needle or L. major-infected sand flies. Weekly disease progression and terminal parasite loads were determined. Immunological responses to KSAC, L110f, or soluble Leishmania antigen (SLA) were assessed throughout vaccination, three and twelve weeks after immunization, and one week post-challenge. Results Following sand fly challenge, KSAC-vaccinated mice were protected while L110f-vaccinated animals showed partial protection. Protection correlated with the ability of SLA to induce IFN-γ-producing CD4+CD62LlowCCR7low effector memory T cells pre- and post-sand fly challenge. Conclusions This study demonstrates the protective efficacy of KSAC+GLA-SE against sand fly challenge; the importance of vector-transmitted challenge in evaluating vaccine candidates against Leishmania infection; and the necessity of a rapid potent Th1 response against Leishmania to attain true protection.


Veterinary Parasitology | 2009

Distinct antigen recognition pattern during zoonotic visceral leishmaniasis in humans and dogs

Yasuyuki Goto; Randall F. Howard; Ajay Bhatia; Joelma Trigo; Maria Nakatani; Eduardo Martins Netto; Steven G. Reed

Leishmania infantum is a causative agent of endemic zoonotic visceral leishmaniasis (VL) in regions of South America and the Mediterranean. Dogs are the major reservoirs for L. infantum in these regions, and control of disease in dogs could have a significant impact on human disease. Although dogs share many symptoms of VL with humans as a result of L. infantum infection, they also show some unique clinical manifestations, which are often a combination of visceral and cutaneous leishmaniasis, suggesting different mechanisms of disease development in dogs and humans. Here, we compare antibody responses of dogs and humans with VL to various defined leishmanial antigens. Parasite lysate and K39, the two most commonly used antigens for serodiagnosis of VL, detected the highest levels of antibodies in both humans and dogs with VL, whereas the recognition patterns of these antigens were distinct between the hosts. Among other defined antigens tested, LmSTI1 and CPB detected higher levels of antibodies in dogs and humans, respectively. These results indicate there is a difference between humans and dogs in antigen recognition patterns during VL. We infer that different strategies may need to be used in development of vaccines and diagnostics for humans and for dogs. In addition, we show a correlation between antibody titers to several antigens and severity of clinical symptoms during canine VL.

Collaboration


Dive into the Randall F. Howard's collaboration.

Top Co-Authors

Avatar

Steven G. Reed

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ajay Bhatia

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yasuyuki Goto

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alessandro Picone

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Malcolm S. Duthie

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Vedvick

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher B. Fox

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rhea N. Coler

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar

Aarthy C. Vallur

Infectious Disease Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge