Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall J. Hunt is active.

Publication


Featured researches published by Randall J. Hunt.


Water Resources Research | 2007

Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor

Christopher S. Lowry; John F. Walker; Randall J. Hunt; Mary P. Anderson

[1] Discrete zones of groundwater discharge in a stream within a peat-dominated wetland were identified on the basis of variations in streambed temperature using a distributed temperature sensor (DTS). The DTS gives measurements of the spatial (±1 m) and temporal (15 min) variation of streambed temperature over a much larger reach of stream (>800 m) than previous methods. Isolated temperature anomalies observed along the stream correspond to focused groundwater discharge zones likely caused by soil pipes within the peat. The DTS also recorded variations in the number of temperature anomalies, where higher numbers correlated well with a gaining reach identified by stream gauging. Focused zones of groundwater discharge showed essentially no change in position over successive measurement periods. Results suggest DTS measurements will complement other techniques (e.g., seepage meters and stream gauging) and help further improve our understanding of groundwater-surface water dynamics in wetland streams.


Applied and Environmental Microbiology | 2004

Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

Mark A. Borchardt; Nathaniel L. Haas; Randall J. Hunt

ABSTRACT Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.


Environmental Pollution | 2008

Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

James B. Shanley; M. Alisa Mast; Donald H. Campbell; George R. Aiken; David P. Krabbenhoft; Randall J. Hunt; John F. Walker; Paul F. Schuster; Ann Chalmers; Brent T. Aulenbach; Norman E. Peters; Mark Marvin-DiPasquale; David W. Clow; Martin M. Shafer

The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1ng L(-1) and MeHg was less than 0.2ng L(-1). THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56)ng L(-1) at Sleepers River, Vermont; 112 (0.75)ng L(-1) at Rio Icacos, Puerto Rico; and 55 (0.80)ng L(-1) at Panola Mt., Georgia. Filtered (<0.7microm) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5ng L(-1) at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling.


Wetlands | 1999

Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands

Randall J. Hunt; John F. Walker; David P. Krabbenhoft

Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.


Wetlands | 2001

Estimating evapotranspiration in natural and constructed wetlands

R. Brandon Lott; Randall J. Hunt

Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.


Ground Water | 2008

Importance of unsaturated zone flow for simulating recharge in a humid climate.

Randall J. Hunt; David E. Prudic; John F. Walker; Mary P. Anderson

Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.


Environmental Science & Technology | 2013

Source and transport of human enteric viruses in deep municipal water supply wells.

Kenneth R. Bradbury; Mark A. Borchardt; Madeline B. Gotkowitz; Susan K. Spencer; Jun Zhu; Randall J. Hunt

Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.


Ground Water | 2009

On constraining pilot point calibration with regularization in PEST

Michael N. Fienen; Christopher T. Muffels; Randall J. Hunt

Ground water model calibration has made great advances in recent years with practical tools such as PEST being instrumental for making the latest techniques available to practitioners. As models and calibration tools get more sophisticated, however, the power of these tools can be misapplied, resulting in poor parameter estimates and/or nonoptimally calibrated models that do not suit their intended purpose. Here, we focus on an increasingly common technique for calibrating highly parameterized numerical models-pilot point parameterization with Tikhonov regularization. Pilot points are a popular method for spatially parameterizing complex hydrogeologic systems; however, additional flexibility offered by pilot points can become problematic if not constrained by Tikhonov regularization. The objective of this work is to explain and illustrate the specific roles played by control variables in the PEST software for Tikhonov regularization applied to pilot points. A recent study encountered difficulties implementing this approach, but through examination of that analysis, insight into underlying sources of potential misapplication can be gained and some guidelines for overcoming them developed.


Scientific Investigations Report | 2010

Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis

John Doherty; Randall J. Hunt; Matthew J. Tonkin

..........................................................................................................................................................


Lake and Reservoir Management | 1996

The Application of an Analytic Element Model to Investigate Groundwater-Lake Interactions at Pretty Lake, Wisconsin

Randall J. Hunt; James T. Krohelski

ABSTRACT Pretty Lake is a 64 acre, sandy-bottomed groundwater flow-through lake that has a history of hydrologic disturbance. Residents and regulators require a better understanding of lake-groundwater interaction to develop measures to protect the lakes hydrologic system and water quality. A groundwater flow model was constructed as a tool to synthesize field data collected at the site, delineate recharge areas that supply groundwater to the lake, and predict die effect of dredging an adjacent drainage ditch. The one layer, two-dimensional steady-state areal model used analytic element (AE) methods because they are quick to apply and include sophisticated simulation of groundwater-surface water interaction. The model calibrated well to groundwater heads (mean absolute difference = 0.05 m), lake stage (within 0.05 m) and ditch fluxes (mean absolute difference = 0.0023 m3·s−1). Model results showed that a single 1000 m wide recharge area supplies all the groundwater inflow to the lake. In addition, the mo...

Collaboration


Dive into the Randall J. Hunt's collaboration.

Top Co-Authors

Avatar

John F. Walker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mary P. Anderson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John Doherty

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Feinstein

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael N. Fienen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James T. Krohelski

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul F. Juckem

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Charles P. Dunning

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mark A. Borchardt

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge