Randy D. Mehlenbacher
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randy D. Mehlenbacher.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Wei Xiong; Jennifer E. Laaser; Randy D. Mehlenbacher; Martin T. Zanni
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces.
Nature Communications | 2015
Randy D. Mehlenbacher; Thomas J. McDonough; Maksim Grechko; Meng-Yin Wu; Michael S. Arnold; Martin T. Zanni
Thin film networks of highly purified semiconducting carbon nanotubes (CNTs) are being explored for energy harvesting and optoelectronic devices because of their exceptional transport and optical properties. The nanotubes in these films are in close contact, which permits energy to flow through the films, although the pathways and mechanisms for energy transfer are largely unknown. Here we use a broadband continuum to collect femtosecond two-dimensional white-light spectra. The continuum spans 500 to 1,300 nm, resolving energy transfer between all combinations of bandgap (S1) and higher (S2) transitions. We observe ultrafast energy redistribution on the S2 states, non-Förster energy transfer on the S1 states and anti-correlated energy levels. The two-dimensional spectra reveal competing pathways for energy transfer, with S2 excitons taking routes depending on the bandgap separation, whereas S1 excitons relax independent of the bandgap. These observations provide a basis for understanding and ultimately controlling the photophysics of energy flow in CNT-based devices.
Journal of Chemical Physics | 2009
Kristina C. Wilson; Brendon Lyons; Randy D. Mehlenbacher; Randy P. Sabatini; David W. McCamant
A new methodology for two-dimensional Raman spectroscopy-termed two-dimensional femtosecond stimulated Raman spectroscopy (2D-FSRS)-is presented and experimental results for acetonitrile are discussed. 2D-FSRS can potentially observe molecular anharmonicity by measuring the modulation of the frequency of a probed Raman mode, at frequency omega(hi), by the coherent motion of an impulsively driven mode, at frequency omega(low). In acetonitrile, the signal is generated by driving the CCN bend (379 cm(-1)) and CC stretch (920 cm(-1)) into coherence via impulsive stimulated Raman scattering and subsequently probing the stimulated Raman spectrum of the CC stretch, the CN stretch (2250 cm(-1)) and the CH stretch (2942 cm(-1)). The resultant signal can be generated by two alternative mechanisms: a fifth-order Raman process that would directly probe anharmonic coupling between the two modes, or a third-order cascade in which a third-order coherent Raman process produces a field that goes on to participate in a third-order stimulated Raman transition. The third-order cascade is shown to dominate the 2D-FSRS spectrum as determined by comparison with the predicted magnitude of the two signals, the 2D spectrum of a mixed isotope experiment, and the concentration dependence of the signal. In acetonitrile, theoretical calculations of the vibrational anharmonicity indicate that the third-order cascade signal should be 10(4) times larger than the fifth-order Raman signal. 2D-FSRS signals are observed between acetonitriles CCN bend, of E symmetry, and several different A(1) modes but are forbidden by symmetry in the fifth-order pathway. A 2D-FSRS spectrum of a 50:50 mixture of acetonitrile and d(3)-acetonitrile shows equivalent intensity for intramolecular coupling peaks and intermolecular coupling peaks, indicating that the observed signal cannot be probing molecular anharmonicity. Finally, the magnitudes of the 2D-FSRS peaks are observed to be proportional to the square of the number density, supporting the cascade mechanism.
Journal of Chemical Physics | 2009
Randy D. Mehlenbacher; Brendon Lyons; Kristina C. Wilson; Yong Du; David W. McCamant
We present a classical theoretical treatment of a two-dimensional Raman spectroscopy based on the initiation of vibrational coherence with an impulsive Raman pump and subsequent probing by two-pulse femtosecond stimulated Raman spectroscopy (FSRS). The classical model offers an intuitive picture of the molecular dynamics initiated by each laser pulse and the generation of the signal field traveling along the probe wave vector. Previous reports have assigned the observed FSRS signals to anharmonic coupling between the impulsively driven vibration and the higher-frequency vibration observed with FSRS. However, we show that the observed signals are not due to anharmonic coupling, which is shown to be a fifth-order coherent Raman process, but instead due to cascades of coherent Raman signals. Specifically, the observed vibrational sidebands are generated by parallel cascades in which a coherent anti-Stokes or Stokes Raman spectroscopy (i.e., CARS or CSRS) field generated by the coherent coupling of the impulsive pump and the Raman pump pulses participates in a third-order FSRS transition. Additional sequential cascades are discussed that will give rise to cascade artifacts at the fundamental FSRS frequencies. It is shown that the intended fifth-order FSRS signals, generated by an anharmonic coupling mechanism, will produce signals of approximately 10(-4) DeltaOD (change in the optical density). The cascading signals, however, will produce stimulated Raman signal of approximately 10(-2) DeltaOD, as has been observed experimentally. Experiments probing deuterochloroform find significant sidebands of the CCl(3) bend, which has an E type symmetry, shifted from the A(1) type C-D and C-Cl stretching modes, despite the fact that third-order anharmonic coupling between these modes is forbidden by symmetry. Experiments probing a 50:50 mixture of chloroform and d-chloroform find equivalent intensity signals of low-frequency CDCl(3) modes as sidebands shifted from both the C-D stretch of CDCl(3) and the C-H stretch of CHCl(3). Such intermolecular sidebands are allowed in the cascade mechanism, but are expected to be extremely small in the fifth-order frequency modulation mechanism. Each of these observations indicates that the observed signals are due to cascading third-order Raman signals.
Nano Letters | 2013
Randy D. Mehlenbacher; Meng-Yin Wu; Maksim Grechko; Jennifer E. Laaser; Michael S. Arnold; Martin T. Zanni
Carbon nanotubes are a promising means of capturing photons for use in solar cell devices. We time-resolved the photoexcitation dynamics of coupled, bandgap-selected, semiconducting carbon nanotubes in thin films tailored for photovoltaics. Using transient absorption spectroscopy and anisotropy measurements, we found that the photoexcitation evolves by two mechanisms with a fast and long-range component followed by a slow and short-range component. Within 300 fs of optical excitation, 20% of nanotubes transfer their photoexcitation over 5-10 nm into nearby nanotube fibers. After 3 ps, 70% of the photoexcitation resides on the smallest bandgap nanotubes. After this ultrafast process, the photoexcitation continues to transfer on a ~10 ps time scale but to predominantly aligned tubes. Ultimately the photoexcitation hops twice on average between fibers. These results are important for understanding the flow of energy and charge in coupled nanotube materials and light-harvesting devices.
Journal of Physical Chemistry B | 2010
Justin M. Rhinehart; Randy D. Mehlenbacher; David W. McCamant
Femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption have been used to probe the photoinduced charge transfer (CT) dynamics of 4-(dimethylamino)benzonitrile in methanol and n-hexane. Through a combined analysis of temporal changes in the Raman modes and transient absorption kinetics, a more complete picture of the reaction coordinate of the intramolecular charge transfer process has been established. FSRS spectra of the phenyl C═C stretching mode (Wilson mode 8a) at 1607 cm(-1), which shifts to 1581 cm(-1) in the CT state, and transient absorption measurements ranging from 360 to 700 nm support internal conversion from the locally excited to the charge transfer state in 4-5 ps and then a subsequent vibrational relaxation within the CT state manifold on a 6-8 ps time scale. Dramatic shifting and narrowing of the 1581 cm(-1) quinoidal C═C stretch (ν(8a)) on the ∼7 ps time scale indicates that the quinoidal distortion is an important probe of the CT reaction dynamics. The cause of the spectral shifts is determined by comparing the observed shifts in the vibrational spectrum to anharmonic couplings computed for the benzonitrile radical anion by density functional theory (DFT) and with quantitative theoretical models of the solvent induced vibrational peak shifts. The DFT calculations indicate that the 10 cm(-1) downshift of the C═C stretch is most likely attributable to significant vibrational excitation in nontotally symmetric modes that are strongly anharmonically coupled to the C═C stretch.
ACS Nano | 2014
Maksim Grechko; Yumin Ye; Randy D. Mehlenbacher; Thomas J. McDonough; Meng-Yin Wu; Robert M. Jacobberger; Michael S. Arnold; Martin T. Zanni
We utilize femtosecond transient absorption spectroscopy to study dynamics of photoexcitation migration in films of semiconducting single-wall carbon nanotubes. Films of nanotubes in close contact enable energy migration such as needed in photovoltaic and electroluminescent devices. Two types of films composed of nanotube fibers are utilized in this study: densely packed and very porous. By comparing exciton kinetics in these films, we characterize excitation transfer between carbon nanotubes inside fibers versus between fibers. We find that intrafiber transfer takes place in both types of films, whereas interfiber transfer is greatly suppressed in the porous one. Using films with different nanotube composition, we are able to test several models of exciton transfer. The data are inconsistent with models that rely on through-space interfiber energy transfer. A model that fits the experimental results postulates that interfiber transfer occurs only at intersections between fibers, and the excitons reach the intersections by diffusing along the long-axis of the tubes. We find that time constants for the inter- and intrafiber transfers are 0.2-0.4 and 7 ps, respectively. In total, hopping between fibers accounts for about 60% of all exciton downhill transfer prior to 4 ps in the dense film. The results are discussed with regards to transmission electron micrographs of the films. This study provides a rigorous analysis of the photophysics in this new class of promising materials for photovoltaics and other technologies.
Journal of Physical Chemistry Letters | 2014
Matthew J. Shea; Randy D. Mehlenbacher; Martin T. Zanni; Michael S. Arnold
Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) exhibits exceptional (n,m) chirality and electronic-type selectivity for near-armchair semiconducting carbon nanotubes. To better understand and control the factors governing this behavior, we experimentally determine the surface coverage and binding configuration of PFO on nanotubes in solution using photoluminescence energy transfer and anisotropy measurements. The coverage increases with PFO concentration in solution, following Langmuir-isotherm adsorption behavior with cooperativity. The equilibrium binding constant (PFO concentration in solution at half coverage), KA, depends on (n,m) and is 1.16 ± 0.30, 0.93 ± 0.12, and 1.13 ± 0.26 mg mL(-1) for the highly selected (7,5), (8,6), and (8,7) species, respectively, and the corresponding PFO wrapping angle at low coverage is 12, 17, and 14 ± 2°, respectively. In contrast, the inferred KA for metallic nanotubes is nearly an order of magnitude greater, indicating that the semiconducting selectivity increases with decreasing PFO concentration. This understanding will quantitatively guide future experimental and computational efforts on electronic type-sorting carbon nanotubes.
Nano Letters | 2017
Alice Lay; Derek S. Wang; Michael D. Wisser; Randy D. Mehlenbacher; Yu Lin; Miriam B. Goodman; Wendy L. Mao; Jennifer A. Dionne
Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF4 nanoparticles (NPs) doped with Yb3+, Er3+, and Mn2+. The lanthanides Yb3+ and Er3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ∼10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF4 and from yellow-green to green for d-metal optimized β-NaYF4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.
Journal of Physical Chemistry Letters | 2016
Randy D. Mehlenbacher; Jialiang Wang; Nicholas M. Kearns; Matthew J. Shea; Jessica T. Flach; Thomas J. McDonough; Meng-Yin Wu; Michael S. Arnold; Martin T. Zanni
We observe ultrafast energy transfer between bare carbon nanotubes in a thin film using two-dimensional (2D) white-light spectroscopy. Using aqueous two-phase separation, semiconducting carbon nanotubes are purified from their metallic counterparts and condensed into a 10 nm thin film with no residual surfactant. Cross peak intensities put the time scale for energy transfer at <60 fs, and 2D anisotropy measurements determine that energy transfer is most efficient between parallel nanotubes, thus favoring directional energy flow. Lifetimes are about 300 fs. Thus, these results are in sharp contrast to thin films prepared from nanotubes that are wrapped by polymers, which exhibit picosecond energy transfer and randomize the direction of energy flow. Ultrafast energy flow and directionality are exciting properties for next-generation photovoltaics, photodetectors, and other devices.