Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy J. Read is active.

Publication


Featured researches published by Randy J. Read.


Acta Crystallographica Section D-biological Crystallography | 1998

Crystallography & NMR system: A new software suite for macromolecular structure determination.

Axel T. Brunger; Paul D. Adams; G.M. Clore; W.L. DeLano; Piet Gros; R.W. Grosse-Kunstleve; Jiansheng Jiang; J. Kuszewski; Michael Nilges; Navraj S. Pannu; Randy J. Read; Luke M. Rice; Thomas Simonson; G.L. Warren

A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs, the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible. The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular structure determination by X-ray crystallography and solution NMR.


Acta Crystallographica Section D-biological Crystallography | 2010

PHENIX: a comprehensive Python-based system for macromolecular structure solution

Paul D. Adams; Pavel V. Afonine; Gábor Bunkóczi; Vincent B. Chen; Ian W. Davis; Nathaniel Echols; Jeffrey J. Headd; Li-Wei Hung; Gary J. Kapral; Ralf W. Grosse-Kunstleve; Airlie J. McCoy; Nigel W. Moriarty; Robert D. Oeffner; Randy J. Read; David C. Richardson; Jane S. Richardson; Thomas C. Terwilliger; Peter H. Zwart

The PHENIX software for macromolecular structure determination is described.


Journal of Applied Crystallography | 2007

Phaser crystallographic software

Airlie J. McCoy; Ralf W. Grosse-Kunstleve; Paul D. Adams; Martyn Winn; Laurent C. Storoni; Randy J. Read

A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.


Acta Crystallographica Section D-biological Crystallography | 2011

Overview of the CCP4 suite and current developments

Winn; Charles Ballard; Kevin Cowtan; Eleanor J. Dodson; Paul Emsley; Phil Evans; Ronan Keegan; Eugene Krissinel; Andrew G. W. Leslie; Airlie J. McCoy; Stuart McNicholas; Garib N. Murshudov; Navraj S. Pannu; Elizabeth Potterton; Harold R. Powell; Randy J. Read; A.A. Vagin; Keith S. Wilson

An overview of the CCP4 software suite for macromolecular crystallography is given.


Acta Crystallographica Section D-biological Crystallography | 2002

PHENIX: building new software for automated crystallographic structure determination

Paul D. Adams; Ralf W. Grosse-Kunstleve; Li-Wei Hung; Thomas R. Ioerger; Airlie J. McCoy; Nigel W. Moriarty; Randy J. Read; James C. Sacchettini; Nicholas K. Sauter; Thomas C. Terwilliger

Structural genomics seeks to expand rapidly the number of protein structures in order to extract the maximum amount of information from genomic sequence databases. The advent of several large-scale projects worldwide leads to many new challenges in the field of crystallographic macromolecular structure determination. A novel software package called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) is therefore being developed. This new software will provide the necessary algorithms to proceed from reduced intensity data to a refined molecular model and to facilitate structure solution for both the novice and expert crystallographer.


Acta Crystallographica Section D-biological Crystallography | 2005

Likelihood-enhanced fast translation functions

Airlie J. McCoy; Ralf W. Grosse-Kunstleve; Laurent C. Storoni; Randy J. Read

This paper is a companion to a recent paper on fast rotation functions [Storoni et al. (2004), Acta Cryst. D60, 432-438], which showed how a Taylor-series expansion of the maximum-likelihood rotation function leads to improved likelihood-enhanced fast rotation functions. In a similar manner, it is shown here how linear and quadratic Taylor-series expansions and least-squares approximations of the maximum-likelihood translation function lead to likelihood-enhanced translation functions, which can be calculated by FFT and which are more sensitive to the correct translation than the traditional correlation-coefficient fast translation function. These likelihood-enhanced translation targets for molecular-replacement searches have been implemented in the program Phaser using the Computational Crystallography Toolbox (cctbx).


Acta Crystallographica Section D-biological Crystallography | 2004

Likelihood-enhanced fast rotation functions

Laurent C. Storoni; Airlie J. McCoy; Randy J. Read

Experiences with the molecular-replacement program Beast have shown that maximum-likelihood rotation targets are more sensitive to the correct orientation than traditional targets. However, this comes at a high computational cost: brute-force rotation searches can take hours or even days of computation time on current desktop computers. Series approximations to the full likelihood target have been developed that can be computed by fast Fourier transforms in minutes. These likelihood-enhanced targets are more sensitive to the correct orientation than the Crowther fast rotation function and they take advantage of information from partial solutions. The likelihood-enhanced rotation targets have been implemented in the program Phaser.


Nature | 2000

Structure of a serpin-protease complex shows inhibition by deformation.

James A. Huntington; Randy J. Read; Robin W. Carrell

The serpins have evolved to be the predominant family of serine-protease inhibitors in man. Their unique mechanism of inhibition involves a profound change in conformation, although the nature and significance of this change has been controversial. Here we report the crystallographic structure of a typical serpin–protease complex and show the mechanism of inhibition. The conformational change is initiated by reaction of the active serine of the protease with the reactive centre of the serpin. This cleaves the reactive centre, which then moves 71 Å to the opposite pole of the serpin, taking the tethered protease with it. The tight linkage of the two molecules and resulting overlap of their structures does not affect the hyperstable serpin, but causes a surprising 37% loss of structure in the protease. This is induced by the plucking of the serine from its active site, together with breakage of interactions formed during zymogen activation. The disruption of the catalytic site prevents the release of the protease from the complex, and the structural disorder allows its proteolytic destruction. It is this ability of the conformational mechanism to crush as well as inhibit proteases that provides the serpins with their selective advantage.


Acta Crystallographica Section D-biological Crystallography | 2008

Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

Thomas C. Terwilliger; Ralf W. Grosse-Kunstleve; Pavel V. Afonine; Nigel W. Moriarty; Peter H. Zwart; Li-Wei Hung; Randy J. Read; Paul D. Adams

The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods.


Nature | 2000

Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands

Pavel I. Kitov; Joanna M. Sadowska; George L. Mulvey; Glen D. Armstrong; Hong Ling; Navraj S. Pannu; Randy J. Read; David R. Bundle

The diseases caused by Shiga and cholera toxins account for the loss of millions of lives each year. Both belong to the clinically significant subset of bacterial AB5 toxins consisting of an enzymatically active A subunit that gains entry to susceptible mammalian cells after oligosaccharide recognition by the B5 homopentamer. Therapies might target the obligatory oligosaccharide–toxin recognition event, but the low intrinsic affinity of carbohydrate–protein interactions hampers the development of low-molecular-weight inhibitors. The toxins circumvent low affinity by binding simultaneously to five or more cell-surface carbohydrates. Here we demonstrate the use of the crystal structure of the B5 subunit of Escherichia coli O157:H7 Shiga-like toxin I (SLT-I) in complex with an analogue of its carbohydrate receptor to design an oligovalent, water-soluble carbohydrate ligand (named STARFISH), with subnanomolar inhibitory activity. The in vitro inhibitory activity is 1–10-million-fold higher than that of univalent ligands and is by far the highest molar activity of any inhibitor yet reported for Shiga-like toxins I and II. Crystallography of the STARFISH/Shiga-like toxin I complex explains this activity. Two trisaccharide receptors at the tips of each of five spacer arms simultaneously engage all five B subunits of two toxin molecules.

Collaboration


Dive into the Randy J. Read's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Terwilliger

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pavel V. Afonine

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ralf W. Grosse-Kunstleve

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Wei Hung

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge