Randy W. Worobo
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randy W. Worobo.
Molecular Microbiology | 1997
Marco J. van Belkum; Randy W. Worobo; Michael E. Stiles
Many non‐lantibiotic bacteriocins of lactic acid bacteria are produced as precursors which have N‐terminal leader peptides that share similarities in amino acid sequence and contain a conserved processing site of two glycine residues in positions ‐1 and ‐2. A dedicated ATP‐binding cassette (ABC) transporter is responsible for the proteolytic cleavage of the leader peptides and subsequent translocation of the bacteriocins across the cytoplasmic membrane. To investigate the role that these leader peptides play in the recognition of the precursor by the ABC transporters, the leader peptides of leucocin A, lactococcin A or colicin V were fused to divergicin A, a bacteriocin from Carnobacterlum divergens that is secreted via the cells general secretion pathway. Production of divergicin was monitored when these fusion constructs were introduced into Leuconostoc gelidum, Lactococcus lactis and Escherichia coli, which carry the secretion apparatus for leucocin A, lactococcins A and B, and colicin V, respectively. The different leader peptides directed the production of divergicin in the homologous hosts. In some cases production of divergicin was also observed when the leader peptides were used in heterologous hosts. For ABC‐transporter‐dependent secretion in E. coli the outer membrane protein TolC was required. Using this strategy, colicin V was produced in L. lactis by fusing this bacteriocin behind the leader peptide of leucocin A.
Applied and Environmental Microbiology | 2013
Lillian Hsu; Jean Fang; Diana A. Borca-Tasciuc; Randy W. Worobo; Carmen I. Moraru
ABSTRACT Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials.
Applied and Environmental Microbiology | 2013
Laura K. Strawn; Esther D. Fortes; Elizabeth A. Bihn; Kendra K. Nightingale; Yrjö T. Gröhn; Randy W. Worobo; Martin Wiedmann; Peter W. Bergholz
ABSTRACT Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields.
Journal of Food Protection | 2005
K.E. Matak; John J. Churey; Randy W. Worobo; S.S. Sumner; Ernest Hovingh; C.R. Hackney; Merle D. Pierson
Certain types of goats cheeses are produced using unpasteurized milk, which increases the food safety concerns for these types of products. Popularity and consumption of goats milk products have increased, and the niche market includes gourmet goats cheeses. The U.S. Code of Federal Regulations and the Pasteurized Milk Ordinance both address the possibility for processing alternatives to heat treatment, and the use of UV light treatment may be a viable alternative that still ensures the safety of the product. Fresh goats milk was inoculated with Listeria monocytogenes (L-2289) at 10(7) CFU/ml and exposed to UV light using the CiderSure 3500 apparatus (FPE Inc., Macedon, NY). Inoculated milk was exposed to a UV dose range between 0 and 20 mJ/cm2 to determine the optimal UV dose. A greater than 5-log reduction was achieved (P < 0.0001) when the milk received a cumulative UV dose of 15.8 +/- 1.6 mJ/cm2. The results of this study indicate that UV irradiation could be used for the reduction of L. monocytogenes in goats milk.
Applied and Environmental Microbiology | 2004
Nese Basaran; A. Quintero-Ramos; Matthew M. Moake; John J. Churey; Randy W. Worobo
ABSTRACT This study examined the effect of different apple cultivars upon the UV inactivation of Escherichia coli O157:H7 strains within unfiltered apple cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 106 to 107 CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895), and exposed to 14 mJ of UV irradiation per cm2. Bacterial populations for treated and untreated samples were then enumerated by using nonselective media. E. coli O157:H7 ATCC 43889 showed the most sensitivity to this disinfection process with an average 6.63-log reduction compared to an average log reduction of 5.93 for both strains 933 and ATCC 43895. The highest log reduction seen, 7.19, occurred for strain ATCC 43889 in Rome cider. The same cider produced the lowest log reductions: 5.33 and 5.25 for strains 933 and ATCC 43895, respectively. Among the apple cultivars, an average log reduction range of 5.78 (Red Delicious) to 6.74 (Empire) was observed, with two statistically significant (α ≤ 0.05) log reduction groups represented. Within the paired cultivar-strain analysis, five of eight ciders showed statistically significant (α ≤ 0.05) differences in at least two of the E. coli strains used. Comparison of log reductions among the E. coli strains to the cider parameters of °Brix, pH, and malic acid content failed to show any statistically significant relationship (R2 ≥ 0.95). However, the results of this study indicate that regardless of the apple cultivar used, a minimum 5-log reduction is achieved for all of the strains of E. coli O157:H7 tested.
Microbiology | 1994
Randy W. Worobo; Thomas Henkel; Miloslav Sailer; Kenneth L. Roy; John C. Vederas; Michael E. Stiles
Carnobacteriocin A is a hydrophobic nonlantibiotic bacteriocin that is detected early in the growth cycle of Carnobacterium piscicola LV17A and encoded by a 49 MDa plasmid. The bacteriocin was purified using hydrophobic interaction and gel filtration chromatography, and reversed-phase HPLC. Three different active peaks (A1, A2 and A3) were detected, but the purified samples had identical N-terminal amino acid sequences for the first 15 amino acids as determined by Edman degradation analysis. Only a 2.4 kb fragment of the EcoRI digest of the plasmid pCP49 hybridized with a 23-mer oligonucleotide probe derived from amino acids 5 to 13 of the amino acid sequence. The structural gene for carnobacteriocin A is located 600 base pairs into the 2.4 kb EcoRI fragment, but no other genetic information was detected on this unit. The structural gene includes an 18 amino acid N-terminal extension of the bacteriocin, ending with Gly-Gly residues in the -2, -1 positions with respect to the cleavage site. The bacteriocin consists of 53 amino acids that differ markedly from the majority of hydrophobic peptide bacteriocins characterized to date. Based on the amino acid sequence derived from the nucleotide sequence a molecular mass of 5052.85 Da was calculated. Mass spectrometric analysis showed that the molecular mass of the major component (A3) was 2 Da lower, thereby indicating the presence of a disulphide bridge between Cys 22 and Cys 51. Carnobacteriocin A2 has a similar structure except that Met 52 is oxidized to a sulphoxide, whereas A1 appears to be a mixture of peptides derived proteolytically from A3 or A2.
Microbiology | 2002
Hilário Cuquetto Mantovani; Haijing Hu; Randy W. Worobo; James B. Russell
Previous work indicated that Streptococcus bovis HC5 had significant antibacterial activity, and even nisin-resistant S. bovis JB1 cells could be strongly inhibited. S. bovis HC5 inhibited a variety of Gram-positive bacteria and the spectrum of activity was similar to monensin, a commonly used feed additive. The crude extracts (ammonium sulfate precipitation) were inactivated by Pronase E and trypsin, but the activity was resistant to heat, proteinase K and alpha-chymotrypsin. Most of the antibacterial activity was cell associated, but it could be liberated by acidic NaCl (100 mM, pH 2.0) without significant cell lysis. When glycolysing S. bovis JB1 cells were treated with either crude or acidic NaCl extracts, intracellular potassium declined and this result indicated the antibacterial activity was mediated by a pore-forming peptide. The peptide could be purified by HPLC and matrix-assisted laser desorption ionization time-of-flight analysis indicated that it had a molecular mass of approximately 2440 Da. The terminal amino acid sequence was VGXRYASXPGXSWKYVXF. The unnamed amino acid residues (designated by X) had approximately the same position as dehydroalanines found in some lantibiotics, but samples that were reduced and alkylated prior to Edman degradation did not have cysteine residues. The only other bacteriocin that had significant similarity was the lantibiotic precursor of Streptococcus pyogenes SF370, but the identity was only 55%. Based on these results, the bacteriocin of S. bovis HC5 appears to be novel and the authors now designate it as bovicin HC5.
Journal of Food Protection | 2004
A. Quintero-Ramos; John J. Churey; P. Hartman; J. Barnard; Randy W. Worobo
This study examined the effects and interactions of UV light dose (1,800 to 20,331 microJ/cm2) and apple cider pH (2.99 to 4.41) on the inactivation of Escherichia coli ATCC 25922, a surrogate for E. coli O157:H7. A predictive model was developed to relate the log reduction factor of E. coli ATCC 25922 to the UV dose. Bacterial populations for treated and untreated samples were enumerated with the use of nonselective media. The results revealed that UV dose was highly significant in the inactivation of E. coli, whereas pH showed no significant effect at higher UV doses. Doses of 6,500 microJ/cm2 or more were sufficient to achieve a greater than 5-log reduction of E. coli. Experimental inactivation data were fitted adequately by a logistic regression model. UV irradiation is an attractive alternative to conventional methods for reducing bacteria in unpasteurized apple cider.
Applied and Environmental Microbiology | 2002
D. E. Hanes; Randy W. Worobo; P. A. Orlandi; D. H. Burr; M. D. Miliotis; M. G. Robl; J. W. Bier; M. J. Arrowood; John J. Churey; G. J. Jackson
ABSTRACT This study evaluated the efficacy of UV irradiation on the inactivation of Cryptosporidium parvum oocysts in fresh apple cider. Cider was inoculated with oocysts and exposed to 14.32 mJ of UV irradiation/cm2. Oocyst viability was assessed with the gamma interferon gene knockout (GKO) mouse and infant BALB/cByJ mouse models. All GKO mice challenged with UV-treated cider demonstrated no morbidity or mortality, and infant BALB/c mice challenged with treated cider were negative for the presence of C. parvum. In contrast, the GKO mice challenged with non-UV-treated inoculated cider died and the parasite was detected in the ileums of all challenged infant mice. This study shows that UV irradiation can be used to inactivate C. parvum in fresh apple cider.
Journal of Food Protection | 2000
Siobain Duffy; John J. Churey; Randy W. Worobo; Donald W. Schaffner
Raw data from validation studies of UV tubes used for nonthermal pathogen reduction in apple cider underwent comprehensive statistical analysis. Data from each tube that demonstrated at least a 5-log reduction of Escherichia coli ATCC 25922, a surrogate for E. coli O157:H7, in each of three trials were used in the analysis. The within- and between-tube variability was calculated for 70 tubes. The mean log reductions of the tubes fit a Beta distribution (Kolmogorov-Smirnov test, 0.0246), and the between-replicate variability followed a logistic distribution (Kolmogorov-Smirnov test, 0.0305). These two distributions can be used together to model UV cider treatment as part of an overall E. coli O157:H7 in cider risk assessment. Examples of codes from @RISK and Analyticato describe these distributions, such as one would find in a quantitative risk assessment, are included.