Rania M. Abdelsalam
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rania M. Abdelsalam.
Journal of Neurochemistry | 2015
Rania M. Abdelsalam; Marwa M. Safar
Gliptins have been recently shown to conquer neuronal degeneration in cell cultures via modulating glucagon‐like peptide (GLP)‐1. This peptide produced in the gut not only crosses the blood–brain barrier but is also synthesized in the brain and acts on GLP‐1R exerting central anti‐inflammatory and antiapoptotic effects, thus impeding neuronal damage. This study investigated the antiparkinsonian effect of vildagliptin, a dipeptidyl peptidase (DPP)‐4 inhibitor in a rat rotenone model targeting mainly the RAGE‐NFκB/Nrf2‐signaling pathways, to judge the potential anti‐inflammatory/antioxidant effects of the drug. Vildagliptin markedly improved the motor performance in the open field and rotarod tests, effects that were emphasized by the accompanied reduction in striatal dopamine content. It modified the striatal energy level (ADP/ATP) associated with partial antagonism of body weight reduction. This incretin enhancer suppressed nuclear factor (NF)κB and, consequently, the downstream inflammatory mediator tumor necrosis factor‐α. Normalization of receptor for advanced glycated end product (RAGE) is a main finding which justifies the anti‐inflammatory effects of vildagliptin, together with hampering striatal inducible nitric oxide synthase, intracellular adhesion molecule‐1 as well as myeloperoxidase. The antioxidant potential of vildagliptin was depicted as entailing reduction in thiobarbituric acid‐reactive substances and the transcriptional factor Nrf‐2 level. Vildagliptin guarded against neuronal demise through an antiapoptotic effect as reflected by the reduction in the mitochondrial matrix component cytochrome c and the key downstream executioner caspase‐3. In conclusion, vildagliptin is endowed with various neuroprotective effects and thus can be a promising candidate for the management of Parkinsons disease.
Brain Research | 2011
Dalaal M. Abdallah; Noha N. Nassar; Rania M. Abdelsalam
Stroke remains a debilitating disease with high incidence of morbidity and mortality, where many reports provide promising venues for prevention/treatment of such ailment. Glibenclamide, a selective blocker of KATP channels, was reported to protect against ischemia and ischemia-reperfusion (IR) injury in several experimental models. Hence, the present study aimed to investigate the possible involvement of free radicals as well as inflammatory and anti-inflammatory mediators in the hippocampus of rats exposed to IR. To this end, male Wistar rats were divided into 3 groups: group I served as sham operated controls; group II was subjected to 15 min ischemia by occlusion of both common carotid arteries, followed by 60 min reperfusion; group III was injected with glibenclamide (1mg/kg, i.p.) 10 min before ischemic-reperfusion injury. IR increased lipid peroxides, myeloperoxidase activity, TNF-α and PGE(2), while decreasing glutathione, total antioxidant capacity, nitric oxide and IL-10 levels in the hippocampus. Glibenclamide reversed all the former alterations, thus highlighting a potential therapeutic utility for this sulphonyl urea in IR brain injury via modulating oxidative stress and inflammatory mediators.
Toxicology and Applied Pharmacology | 2014
Hebatallah A. Darwish; Hany H. Arab; Rania M. Abdelsalam
Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50mg/kg) and celecoxib (5mg/kg) were orally administered to Wistar rats once daily for 21days starting 1h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50mg/kg dose of chrysin exerted comparable protective actions to celecoxib.
Chemico-Biological Interactions | 2015
Muhammed A. Saad; Rania M. Abdelsalam; Sanaa A. Kenawy; Amina S. Attia
INTRODUCTION It has been argued recently that ischemic preconditioning (IPre) and postconditioning (IPost) have beneficial effects in many ischemic disorders however; their effects on global ischemia/reperfusion (I/R) are poorly understood. Thus, the present work aimed to study the possible mechanisms underlying the neuroprotective effects of IPre and IPost. METHODS Animals were randomly allocated into 4 groups (n = 30): (1) Sham operated (SO); (2) I/R group, animals were subjected to 15 min global ischemia followed by 60 min reperfusion; (3) IPre, animals were subjected to 3 episodes of 5 min ischemia followed by 10 min reperfusion before I/R; (4) IPost, animals were subjected to three episodes of 10s of ischemia and 10s of reperfusion after the period of ischemia followed by a 60 min reperfusion period. Lactate dehydrogenase activity, oxidative stress, inflammatory and apoptotic biomarkers, as well as neurotransmitters, infarct size and histopathological examination were assessed. RESULTS I/R induced hippocampal damage through increasing oxidative stress, inflammatory, excitotoxic and apoptotic markers as well as lactate dehydrogenase activity and infarct size. Both, IPre and IPost attenuated most markers induced by I/R. CONCLUSIONS IPre and IPost neuroprotective effects can be explained through their anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms.
Canadian Journal of Physiology and Pharmacology | 2013
Hala F. Zaki; Rania M. Abdelsalam
Hepatic ischemia-reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.
Pharmacological Reports | 2015
Marwa M. Safar; Rania M. Abdelsalam
BACKGROUND Sulfurous mineral water and its main active ingredient sodium hydrosulfide (NaHS) are major sources of H2S. The present study aimed to explore their protective effect on one of the serious long-term complications of diabetes; diabetic nephropathy. METHODS Sulfurous mineral water (as drinking water), NaHS (14 μmol/kg/day; ip), and gliclazide (10mg/kg; po) were administered daily for 6 weeks to streptozotocin (STZ)-diabetic rats. RESULTS STZ-induced diabetes was associated with body weight reduction, hyperglycemia, overproduction of glycated hemoglobin, as well as decline in serum insulin, C-peptide, and insulin like growth factor-I. Besides, diabetes impaired kidney functions and imposed oxidative and nitrosative stress as manifested by elevated contents of renal thiobarbituric acid reactive substances and nitric oxide, parallel to reduced glutathione content. These deleterious effects were antagonized by sulfurous water and to a better extent by NaHS. Activities of myeloperoxidase and sorbitol dehydrogenase were not altered by STZ or any of the treatments. However, STZ-induced diabetes was accompanied by an increment of aldose reductase which was only mitigated by gliclazide and NaHS. Histopathological examination of kidney sections corroborated the biochemical findings. CONCLUSION This study suggests a novel therapeutic approach for diabetic nephropathy using H2S donors.
Archives of Pharmacal Research | 2012
Nagwa M. Abdel Gawad; Hanan H. Georgey; Nashwa A. Ibrahim; Noha H. Amin; Rania M. Abdelsalam
Novel dihydropyrazole 5–8, 10 and pyrazole derivatives 12, 14, 15, 17 were synthesized. The structures of the newly synthesized compounds were elucidated by spectral and elemental analyses. The anti-inflammatory activity of all new compounds was evaluated using the carrageenan-induced rat paw edema test using indomethacin and celecoxib as reference drugs. The most active derivatives as anti-inflammatory agents were accordingly tested for their analgesic activity using the p-benzoquinone-induced writhing method in mice and results revealed that these compounds had also good analgesic activity. The ulcerogenic liability of the selected compounds was also evaluated. Results showed that the selected derivatives had anti-inflammatory activity comparable to or slightly lower than the reference drugs, reaching about 82% inhibition with a considerable gastric safety profile.
Pharmacological Reports | 2015
Dalia M. El-Tanbouly; Rania M. Abdelsalam; Amina S. Attia; Mohamed T. Abdel-Aziz
BACKGROUND Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium (Mg), a well known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS-induced endotoxima in mice. METHODS Mg (20 and 40mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced 1h after the last dose of Mg by a single dose of LPS (2mg/kg, ip) and 3h thereafter plasma was separated, animals were sacrificed and their livers were isolated. RESULTS LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and MPO activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations. CONCLUSION Pretreatment with Mg protects the liver from the acute injury which occurs shortly after septicemia.
Journal of Biochemical and Molecular Toxicology | 2017
Marwa M. Mahfouz; Rania M. Abdelsalam; Marwa A. Masoud; Hanaa A. Mansour; Omar A. Ahmed-Farid; Sanaa A. Kenawy
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one‐time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 106 and 14‐day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freunds adjuvant in Swiss mice. Results of MSCs and MP‐treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor‐alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs‐treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.
Planta Medica | 2013
Susanne Knuth; Rania M. Abdelsalam; Mohamed T. Khayyal; Frank Schweda; Jörg Heilmann; Martin G. Kees; Georg Mair; Frieder Kees; Guido Jürgenliemk
After oral administration of 100 mg/kg b. w. (235.8 µmol/kg) salicortin to Wistar rats, peak serum concentrations of 1.43 mg/L (13.0 µM) catechol were detected after 0.5 h in addition to salicylic acid by HPLC-DAD after serum processing with β-glucuronidase and sulphatase. Both metabolites could also be detected in the serum of healthy volunteers following oral administration of a willow bark extract (Salicis cortex, Salix spec., Salicaceae) corresponding to 240 mg of salicin after processing with both enzymes. In humans, the cmax (1.46 mg/L, 13.3 µM) of catechol was reached after 1.2 h. The predominant phase-II metabolite in humans and rats was catechol sulphate, determined by HPLC analysis of serum samples processed with only one kind of enzyme. Without serum processing with glucuronidase and sulphatase, no unconjugated catechol could be detected in human and animal serum samples. As catechol is described as an anti-inflammatory compound, these results may contribute to the elucidation of the mechanism of the action of willow bark extract.