Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ranjeet S. Sokhi is active.

Publication


Featured researches published by Ranjeet S. Sokhi.


Environmental Modelling and Software | 2006

Prediction of ozone levels in London using the MM5-CMAQ modelling system

Ranjeet S. Sokhi; R. San José; Nutthida Kitwiroon; E. Fragkou; J. L. Pérez; D.R. Middleton

Air pollution in urban areas has important implications for health and environmental management. Consequently, various methodologies have been developed for its assessment. Traditionally, simple approaches such as the box model or the Gaussian plume have been used to assess urban air quality. The use of Eulerian grid models, which provide a more realistic and comprehensive description of the urban atmosphere, has been increasing over the past few years. This paper reports on the use of the MM5-CMAQ modelling system to predict hourly ozone levels over London, UK. This work represents the first application of MM5-CMAQ in the UK for predicting air pollution levels in London. Domain resolutions of 9km, 3km and 1km (innermost) have been employed for this study. Summer periods in July and August 2002 have been simulated and the predicted results have been compared to several urban background stations across London. Input data for emissions have been derived from the UK National Emissions inventory and from the outputs of the EMIMO emission model. The CBM-IV chemical scheme has been used to simulate the atmospheric reactions for ozone. The model performance has been evaluated with measured data through a range of statistical measures. Although, the MM5-CMAQ model reproduces the ozone temporal trends it was not able to simulate the peak magnitudes consistently. Furthermore, for nighttime the model overestimated the ozone concentrations. The paper discusses the model performance and reasons for these discrepancies in terms of the various input data including emissions and meteorological parameters.


Bulletin of the American Meteorological Society | 2015

Meteorology, air quality, and health in London: The ClearfLo project

Sylvia I. Bohnenstengel; Stephen E. Belcher; A. C. Aiken; J. D. Allan; G. Allen; Asan Bacak; Thomas J. Bannan; Janet F. Barlow; David C. S. Beddows; William J. Bloss; Am Booth; Charles Chemel; Omduth Coceal; C. Di Marco; Manvendra K. Dubey; K.H. Faloon; Zoe L. Fleming; Markus Furger; Johanna K. Gietl; R. Graves; David Green; C. S. B. Grimmond; Christos Halios; Jacqueline F. Hamilton; Roy M. Harrison; Mathew R. Heal; Dwayne E. Heard; Carole Helfter; Scott C. Herndon; R.E. Holmes

AbstractAir quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and eleva...


Environment International | 2016

Particulate matter air pollution components and risk for lung cancer

Ole Raaschou-Nielsen; Robert H. J. Beelen; Ming-Dong Wang; Gerard Hoek; Zorana Jovanovic Andersen; Barbara Hoffmann; Massimo Stafoggia; Evangelia Samoli; Gudrun Weinmayr; Konstantina Dimakopoulou; Mark J. Nieuwenhuijsen; Wei W. Xun; Paul Fischer; Kirsten Thorup Eriksen; Mette Sørensen; Anne Tjønneland; Fulvio Ricceri; K. de Hoogh; Timothy J. Key; Marloes Eeftens; Petra H. Peeters; H. B. Bueno-de-Mesquita; Kees Meliefste; Bente Oftedal; Per E. Schwarze; Per Nafstad; Claudia Galassi; Enrica Migliore; Andrea Ranzi; Giulia Cesaroni

BACKGROUND Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. RESULTS The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant. In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m(3)), PM10 S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important.


Environment International | 2014

Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts : Results from the ESCAPE and TRANSPHORM projects

Meng Wang; Rob Beelen; Massimo Stafoggia; Ole Raaschou-Nielsen; Zorana Jovanovic Andersen; Barbara Hoffmann; Paul Fischer; Danny Houthuijs; Mark J. Nieuwenhuijsen; Gudrun Weinmayr; Paolo Vineis; Wei W. Xun; Konstantina Dimakopoulou; Evangelia Samoli; Tiina Laatikainen; Timo Lanki; Anu W. Turunen; Bente Oftedal; Per E. Schwarze; Geir Aamodt; Johanna Penell; Ulf de Faire; Michal Korek; Karin Leander; Göran Pershagen; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Kirsten Thorup Eriksen; Mette Sørensen

BACKGROUND Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. AIMS The aim of this study was to examine the association of PM composition with cardiovascular mortality. METHODS We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts--Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. RESULTS The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). CONCLUSION In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.


Environment International | 2010

Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments

C. Kornartit; Ranjeet S. Sokhi; M.A. Burton; Khaiwal Ravindra

People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).


Monthly Weather Review | 2009

Quantifying the imprint of a severe Hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere

Charles Chemel; M. R. Russo; J. A. Pyle; Ranjeet S. Sokhi; Cornelius Schiller

Abstract The development of a severe Hector thunderstorm that formed over the Tiwi Islands, north of Australia, during the Aerosol and Chemical Transport in Tropical Convection/Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (ACTIVE/SCOUT-O3) field campaign in late 2005, is simulated by the Advanced Research Weather Research and Forecasting (ARW) model and the Met Office Unified Model (UM). The general aim of this paper is to investigate the role of isolated deep convection over the tropics in regulating the water content in the upper troposphere/lower stratosphere (UT/LS). Using a horizontal resolution as fine as 1 km, the numerical simulations reproduce the timing, structure, and strength of Hector fairly well when compared with field campaign observations. The sensitivity of results from ARW to horizontal resolution is investigated by running the model in a large-eddy simulation mode with a horizontal resolution of 250 m. While refining the horizontal resolutio...


Environmental Health Perspectives | 2015

Natural-Cause Mortality and Long-Term Exposure to Particle Components: An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project

Rob Beelen; Gerard Hoek; Ole Raaschou-Nielsen; Massimo Stafoggia; Zorana Jovanovic Andersen; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Paul Fischer; Mark J. Nieuwenhuijsen; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Alessandro Marcon; Erkki Vartiainen; Timo Lanki; Tarja Yli-Tuomi; Bente Oftedal; Per E. Schwarze; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes-Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Göran Pershagen; Kirsten Thorup Eriksen; Kim Overvad

Background Studies have shown associations between mortality and long-term exposure to particulate matter air pollution. Few cohort studies have estimated the effects of the elemental composition of particulate matter on mortality. Objectives Our aim was to study the association between natural-cause mortality and long-term exposure to elemental components of particulate matter. Methods Mortality and confounder data from 19 European cohort studies were used. Residential exposure to eight a priori–selected components of particulate matter (PM) was characterized following a strictly standardized protocol. Annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM size fractions ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) were estimated using land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air pollution were conducted using Cox proportional hazards models using a common protocol followed by meta-analysis. Results The total study population consisted of 291,816 participants, of whom 25,466 died from a natural cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200 ng/m3). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass was reduced. Conclusions Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association was robust to adjustment for other pollutants and PM2.5. Citation Beelen R, Hoek G, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer PH, Nieuwenhuijsen MJ, Xun WW, Katsouyanni K, Dimakopoulou K, Marcon A, Vartiainen E, Lanki T, Yli-Tuomi T, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Östenson C-G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Overvad K, Sørensen M, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita HB, Sugiri D, Krämer U, Heinrich J, de Hoogh K, Key T, Peters A, Hampel R, Concin H, Nagel G, Jaensch A, Ineichen A, Tsai MY, Schaffner E, Probst-Hensch NM, Schindler C, Ragettli MS, Vilier A, Clavel-Chapelon F, Declercq C, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Katsoulis M, Trichopoulou A, Keuken M, Jedynska A, Kooter IM, Kukkonen J, Sokhi RS, Vineis P, Brunekreef B. 2015. Natural-cause mortality and long-term exposure to particle components: an analysis of 19 European cohorts within the Multi-Center ESCAPE Project. Environ Health Perspect 123:525–533; http://dx.doi.org/10.1289/ehp.1408095


Reference Module in Earth Systems and Environmental Sciences#R##N#Encyclopedia of Ecology | 2008

Air Quality Modeling

R. San José; Alexander Baklanov; Ranjeet S. Sokhi; Kostas D. Karatzas; J. L. Pérez

Air pollution modeling (APM) is being developed and used in order to better understand, investigate, assess, and regulate the quality of the atmospheric environment and the distribution of toxic pollutants which are often used in ecotoxicology. Atmospheric models are also used to assess the impact of air pollutants on human health. In this respect, APM covers a very complex and interdisciplinary scientific area, where aspects of environmental policy and decision making mix together with aspects like remote sensing, land-use impact, initial and boundary conditions, data assimilation techniques, chemical schemes, comparison methods between data measured and data modeled, computational efficiency and performance, coupling with the meteorology, long-range transport impact on local air pollution, new satellite data assimilation techniques, real-time and forecasting air quality modeling and sensitivity analysis, and many others. APM has progressed significantly during the last two decades, attracting the interest of various research groups and initiatives worldwide. It covers all aspects related to the life cycle of pollutants, starting from their emission or ‘production’ within the atmosphere, and ending with their impacts on man and the ecosystem. This field of science is interested to describe the generation, transportation, dispersion, physical and chemical transformation, and the impact of various categories of substances that are identified and classified as air pollutants via the environmental legal framework and the scientific community. It should be noted that air pollution is very much related to meteorological fields, since the atmosphere is governed by the general fluid mechanics laws described by the Navier–Stokes equation system, while progress in computer performance during the last decades has substantially impelled the research on air quality modeling in a parallel way. This contribution focuses on providing a general overview of the state of the art on air quality modeling, from the point of view of the ‘user community’, that is, policy makers, urban planners, environmental managers, etc. It also tries to bring to the discussion key questions concerning the air quality modeling success in usage, such as: identification of uncertainties in emission inventories and meteorological fields, capability of simulating pollutants like urban aerosols, the next-generation developments in models to answer new scientific questions, etc.


Analyst | 1997

Ambient Volatile Organic Compound Monitoring by Diffusive Sampling. Compatibility of High Uptake Rate Samplers With Thermal Desorption

Matthew S. Bates; Norbert Gonzalez-Flesca; Ranjeet S. Sokhi; Vincenzo Cocheo

Field and laboratory validation studies were carried out on a novel, high uptake rate, radial diffusive sampler loaded with Carbotrap, a thermally desorbable adsorbent. For field experiments parallel techniques were employed for comparison. The goal was to assess the compatibility of the device for subsequent thermal desorption and preconcentration of the sample for analysis. Some unexpected results were obtained especially for benzene, where it was observed that, under certain conditions the longer the device was exposed to an atmosphere, the less sample was collected. A possible explanation for these results is put forward by applying knowledge previously acquired on saturation and competitivity effects. An alteration to the sampler geometry is proposed which, through further laboratory and field work, is shown to overcome this problem.


Archive | 2011

Integrated systems of meso-meteorological and chemical transport models

Alexander Baklanov; Mahura Alexander; Ranjeet S. Sokhi

Preface.- Introduction Integrated Systems.- Part I - On-Line Modelling and Feedbacks.- Part II - Off-Line Modelling and Interfaces.- Part III - Validation and Case Studies.- Part IV - HIRLAM/HARMONIE - Atmospheric Chemical Transport Models Integration Session.- Part V - Summary and Round Table Discussion.

Collaboration


Dive into the Ranjeet S. Sokhi's collaboration.

Top Co-Authors

Avatar

Charles Chemel

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Jaakko Kukkonen

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Alexander Baklanov

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Pirovano

World Meteorological Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nutthida Kitwiroon

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renate Forkel

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge