Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ranveer Chandra is active.

Publication


Featured researches published by Ranveer Chandra.


international conference on mobile systems, applications, and services | 2010

MAUI: making smartphones last longer with code offload

Eduardo Cuervo; Aruna Balasubramanian; Dae-Ki Cho; Alec Wolman; Stefan Saroiu; Ranveer Chandra; Paramvir Bahl

This paper presents MAUI, a system that enables fine-grained energy-aware offload of mobile code to the infrastructure. Previous approaches to these problems either relied heavily on programmer support to partition an application, or they were coarse-grained requiring full process (or full VM) migration. MAUI uses the benefits of a managed code environment to offer the best of both worlds: it supports fine-grained code offload to maximize energy savings with minimal burden on the programmer. MAUI decides at run-time which methods should be remotely executed, driven by an optimization engine that achieves the best energy savings possible under the mobile devices current connectivity constrains. In our evaluation, we show that MAUI enables: 1) a resource-intensive face recognition application that consumes an order of magnitude less energy, 2) a latency-sensitive arcade game application that doubles its refresh rate, and 3) a voice-based language translation application that bypasses the limitations of the smartphone environment by executing unsupported components remotely.


acm/ieee international conference on mobile computing and networking | 2004

SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks

Paramvir Bahl; Ranveer Chandra; John Dunagan

Capacity improvement is one of the principal challenges in wireless networking. We present a link-layer protocol called Slotted Seeded Channel Hopping, or SSCH, that increases the capacity of an IEEE 802.11 network by utilizing frequency diversity. SSCH can be implemented in software over an IEEE 802.11-compliant wireless card. Each node using SSCH switches across channels in such a manner that nodes desiring to communicate overlap, while disjoint communications mostly do not overlap, and hence do not interfere with each other. To achieve this, SSCH uses a novel scheme for distributed rendezvous and synchronization. Simulation results show that SSCH significantly increases network capacity in several multi-hop and single-hop wireless networking scenarios.


international conference on computer communications | 2004

MultiNet: connecting to multiple IEEE 802.11 networks using a single wireless card

Ranveer Chandra; Paramvir Bahl

There are a number of scenarios where it is desirable to have a wireless device connect to multiple networks simultaneously. Currently, this is possible only by using multiple wireless network cards in the device. Unfortunately, using multiple wireless cards causes excessive energy drain and consequent reduction of lifetime in battery operated devices. We propose a software based approach, called MultiNet, that facilitates simultaneous connections to multiple networks by virtualizing a single wireless card. The wireless card is virtualized by introducing an intermediate layer below IP, which continuously switches the card across multiple networks. The goal of the switching algorithm is to he transparent to the user who sees her machine as being connected to multiple networks. We present the design, implementation, and performance of the MultiNet system. We analyze and evaluate buffering and switching algorithms in terms of delay and energy consumption. Our system is agnostic of the upper layer protocols, and works well over popular IEEE 802.11 wireless LAN cards.


acm special interest group on data communication | 2009

White space networking with wi-fi like connectivity

Paramvir Bahl; Ranveer Chandra; Thomas Moscibroda; Rohan Murty; Matt Welsh

Networking over UHF white spaces is fundamentally different from conventional Wi-Fi along three axes: spatial variation, temporal variation, and fragmentation of the UHF spectrum. Each of these differences gives rise to new challenges for implementing a wireless network in this band. We present the design and implementation of Net7, the first Wi-Fi like system constructed on top of UHF white spaces. Net7 incorporates a new adaptive spectrum assignment algorithm to handle spectrum variation and fragmentation, and proposes a low overhead protocol to handle temporal variation. builds on a simple technique, called SIFT, that reduces the time to detect transmissions in variable channel width systems by analyzing raw signals in the time domain. We provide an extensive evaluation of the system in terms of a prototype implementation and detailed experimental and simulation results.


acm special interest group on data communication | 2007

Towards highly reliable enterprise network services via inference of multi-level dependencies

Paramvir Bahl; Ranveer Chandra; Albert G. Greenberg; Srikanth Kandula; David A. Maltz; Ming Zhang

Localizing the sources of performance problems in large enterprise networks is extremely challenging. Dependencies are numerous, complex and inherently multi-level, spanning hardware and software components across the network and the computing infrastructure. To exploit these dependencies for fast, accurate problem localization, we introduce an Inference Graph model, which is well-adapted to user-perceptible problems rooted in conditions giving rise to both partial service degradation and hard faults. Further, we introduce the Sherlock system to discover Inference Graphs in the operational enterprise, infer critical attributes, and then leverage the result to automatically detect and localize problems. To illuminate strengths and limitations of the approach, we provide results from a prototype deployment in a large enterprise network, as well as from testbed emulations and simulations. In particular, we find that taking into account multi-level structure leads to a 30% improvement in fault localization, as compared to two-level approaches.


mobile ad hoc networking and computing | 2007

Allocating dynamic time-spectrum blocks in cognitive radio networks

Yuan Yuan; Paramvir Bahl; Ranveer Chandra; Thomas Moscibroda; Yunnan Wu

A number of studies have shown the abundance of unused spectrum in the TV bands. This is in stark contrast to the overcrowding of wireless devices in the ISM bands. A recent trend to alleviate this disparity is the design of Cognitive Radios, which constantly sense the spectrum and opportunistically utilize unused frequencies in the TV bands. In this paper, we introduce the concept of a time-spectrum block to model spectrum reservation, and use it to present a theoretical formalization of the spectrum allocation problem in cognitive radio networks. We present a centralized and a distributed protocol for spectrum allocation and show that these protocols are close to optimal in most scenarios. We have implemented the distributed protocol in QualNet and show that our analysis closely matches the simulation results.


acm special interest group on data communication | 2008

A case for adapting channel width in wireless networks

Ranveer Chandra; Ratul Mahajan; Thomas Moscibroda; Ramya Raghavendra; Paramvir Bahl

We study a fundamental yet under-explored facet in wireless communication -- the width of the spectrum over which transmitters spread their signals, or the channel width. Through detailed measurements in controlled and live environments, and using only commodity 802.11 hardware, we first quantify the impact of channel width on throughput, range, and power consumption. Taken together, our findings make a strong case for wireless systems that adapt channel width. Such adaptation brings unique benefits. For instance, when the throughput required is low, moving to a narrower channel increases range and reduces power consumption; in fixed-width systems, these two quantities are always in conflict. We then present a channel width adaptation algorithm, called SampleWidth, for the base case of two communicating nodes. This algorithm is based on a simple search process that builds on top of existing techniques for adapting modulation. Per specified policy, it can maximize throughput or minimize power consumption. Evaluation using a prototype implementation shows that SampleWidth correctly identities the optimal width under a range of scenarios. In our experiments with mobility, it increases throughput by more than 60% compared to the best fixed-width configuration.


international conference on mobile systems, applications, and services | 2007

Wireless wakeups revisited: energy management for voip over wi-fi smartphones

Yuvraj Agarwal; Ranveer Chandra; Alec Wolman; Paramvir Bahl; Kevin Chin; Rajesh K. Gupta

IP based telephony is rapidly gaining acceptance over traditional means of voice communication. Wireless LANs are also becoming ubiquitous due to their inherent ease of deployment and decreasing costs. In enterpriseWi-Fi environments, VoIP is a compelling application for devices such as smart phones with multiple wireless interfaces. However, the high energy consumption of Wi-Fi interfaces, especially when a device is idle,presents a significant barrier to the widespread adoption of VoIP over Wi-Fi.To address this issue, we present Cell2Notify, a practical and deployable energy management architecture that leverages the cellular radio on a smart phone to implement wakeup for the high-energy consumption Wi-Fi radio. We present detailed measurements of energy consumption on smart phone devices, and we show that Cell2Notify, can extend the battery lifetime of VoIPover Wi-Fi enabled smart phones by a factor of 1.7 to 6.4.


international conference on distributed computing systems | 2001

Anonymous Gossip: improving multicast reliability in mobile ad-hoc networks

Ranveer Chandra; Venugopalan Ramasubramanian; Kenneth P. Birman

In recent years, a number of applications of ad-hoc networks have been proposed. Many of them are based on the availability of a robust and reliable multicast protocol. We address the issue of reliability and propose a scalable method to improve packet delivery of multicast routing protocols and decrease the variation in the number of packets received by different nodes. The proposed protocol works in two phases. In the first phase, any suitable protocol is used to multicast a message to the group, while in the second concurrent phase, the gossip protocol tries to recover lost messages. Our proposed gossip protocol is called Anonymous Gossip (AG) since nodes need not know the other group members for gossip to be successful. This is extremely desirable for mobile nodes, that have limited resources, and where the knowledge of group membership is difficult to obtain. As a first step, anonymous gossip is implemented over MAODV without much overhead and its performance is studied. Simulations show that the packet delivery of MAODV is significantly improved and the variation in number of packets delivered is decreased.


ieee international symposium on dynamic spectrum access networks | 2011

SenseLess: A database-driven white spaces network

Rohan Murty; Ranveer Chandra; Thomas Moscibroda; Paramvir Bahl

The most recent FCC ruling proposes relying on a database of incumbents as the primary means of determining white space availability at any white spaces device (WSD). While the ruling provides broad guidelines for the database, the specifics of its design, features, implementation, and use are yet to be determined. Furthermore, architecting a network where all WSDs rely on the database raises several systems and networking challenges that have remained unexplored. Also, the ruling treats the database only as a storehouse for incumbents. We believe that the mandated use of the database has an additional opportunity: a means to dynamically manage the RF spectrum. Motivated by this opportunity, in this paper we present SenseLess, a database driven white spaces network. As suggested by its very name, in SenseLess, WSDs obviate the need to sense the spectrum by relying entirely on a database service to determine white spaces availability. The service, using a combination of an up-to-date database of incumbents, sophisticated signal propagation modeling, and an efficient content dissemination mechanism ensures efficient, scalable, and safe white space network operation. We build, deploy, and evaluate SenseLess and compare our results to ground truth spectrum measurements. We present the unique system design considerations that arise due to operating over the white spaces. We also evaluate its efficiency and scalability. To the best of our knowledge, this is the first paper that identifies and examines the systems and networking challenges that arise from operating a white space network, which is solely dependent on a channel occupancy database.

Collaboration


Dive into the Ranveer Chandra's collaboration.

Researchain Logo
Decentralizing Knowledge