Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphael Faiss is active.

Publication


Featured researches published by Raphael Faiss.


PLOS ONE | 2013

Significant Molecular and Systemic Adaptations after Repeated Sprint Training in Hypoxia

Raphael Faiss; Bertrand Léger; Jean-Marc Vesin; Pierre-Etienne Fournier; Yan Eggel; Olivier Dériaz; Grégoire P. Millet

While intermittent hypoxic training (IHT) has been reported to evoke cellular responses via hypoxia inducible factors (HIFs) but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA) performed in normoxia via improved glycolysis and O2 utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m) or normoxia (RSN, 485 m). Before (Pre-) and after (Post-) training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1∶2) with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01) to the same extent (6% vs 7%, NS) in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01) but not in RSN (9.3±4.2 vs. 8.9±3.5). mRNA concentrations of HIF-1α (+55%), carbonic anhydrase III (+35%) and monocarboxylate transporter-4 (+20%) were augmented (p<0.05) whereas mitochondrial transcription factor A (−40%), peroxisome proliferator-activated receptor gamma coactivator 1α (−23%) and monocarboxylate transporter-1 (−36%) were decreased (p<0.01) in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb]) during sprints throughout RSA test increased to a greater extent (p<0.01) in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.


British Journal of Sports Medicine | 2013

Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia

Raphael Faiss; Olivier Girard; Grégoire P. Millet

Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during ‘aerobic’ or ‘anaerobic’ interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) ‘all-out’ sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.


Medicine and Science in Sports and Exercise | 2013

Ventilation, Oxidative Stress, and Nitric Oxide in Hypobaric versus Normobaric Hypoxia

Raphael Faiss; Vincent Pialoux; Claudio Sartori; Camille Faes; Olivier Dériaz; Grégoire P. Millet

PURPOSE Slight differences in physiological responses and nitric oxide (NO) have been reported at rest between hypobaric hypoxia (HH) and normobaric hypoxia (NH) during short exposure.Our study reports NO and oxidative stress at rest and physiological responses during moderate exercise in HH versus NH. METHODS Ten subjects were randomly exposed for 24 h to HH (3000 m; FIO2, 20.9%; BP, 530 ± 6 mm Hg) or to NH (FIO2, 14.7%; BP, 720 ± 1 mm Hg). Before and every 8 h during the hypoxic exposures, pulse oxygen saturation (SpO2), HR, and gas exchanges were measured during a 6-min submaximal cycling exercise. At rest, the partial pressure of exhaled NO, blood nitrate and nitrite (NOx), plasma levels of oxidative stress, and pH levels were additionally measured. RESULTS During exercise, minute ventilation was lower in HH compared with NH (-13% after 8 h, P < 0.05). End-tidal CO2 pressure was lower (P < 0.01) than PRE both in HH and NH but decreased less in HH than that in NH (-25% vs. -37%, P < 0.05).At rest, exhaled NO and NOx decreased in HH (-46% and -36% after 24 h, respectively, P < 0.05) whereas stable in NH. By contrast, oxidative stress was higher in HH than that in NH after 24 h (P < 0.05). The plasma pH level was stable in HH but increased in NH (P < 0.01). When compared with prenormoxic values, SpO2, HR, oxygen consumption, breathing frequency, and end-tidal O2 pressure showed similar changes in HH and NH. CONCLUSION Lower ventilatory responses to a similar hypoxic stimulus during rest and exercise in HH versus NH were sustained for 24 h and associated with lower plasma pH level, exaggerated oxidative stress, and impaired NO bioavailability.


British Journal of Sports Medicine | 2013

Hypoxic training and team sports: a challenge to traditional methods?

Grégoire P. Millet; Raphael Faiss; Franck Brocherie; Olivier Girard

In 2007, Wilber1 presented the main altitude/hypoxic training methods used by elite athletes: ‘live high—train high’ (LHTH) and ‘live high—train low’ (LHTL); sleeping at altitude to gain the haematological adaptations (increased erythrocyte volume) but training at sea level to maximise performance (maintenance of sea-level training intensity and oxygen flux). The LHTL method can be accomplished through a number of methods and devices: natural/terrestrial altitude, nitrogen dilution, oxygen filtration and supplemental oxygen. Another method is the ‘live low—train high’ (LLTH) method including intermittent hypoxic exposure at rest (IHE) or during intermittent hypoxic training sessions (IHT). Noteworthy, all supporting references were conducted with endurance elite athletes (ie, cyclists, triathletes, cross-country skiers, runners, swimmers, kayakers and rowers) and there is an extensive literature relative to LHTH as well as LHTL. However, there is a lack of evidence for the applicability of these methods in team-sport athletes. In recent times, media reports have provided us with coverage of some high-profile clubs or national squads in various team-sport disciplines undertaking fitness programmes at altitude during the early preseason or in preparation of a major competition. Despite the evident observation that athletes from different team sports and from all around the world are using altitude training more than ever before, it is …


Journal of Strength and Conditioning Research | 2015

High-intensity Intermittent Training in Hypoxia: A Double-blinded, Placebo-controlled Field Study in Youth Football Players

Franck Brocherie; Olivier Girard; Raphael Faiss; Grégoire P. Millet

Abstract Brocherie, F, Girard, O, Faiss, R, and Millet, GP. High-intensity intermittent training in hypoxia: A double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res 29(1): 226–237, 2015—This study examined the effects of 5 weeks (∼60 minutes per training, 2 d·wk−1) of run-based high-intensity repeated-sprint ability (RSA) and explosive strength/agility/sprint training in either normobaric hypoxia repeated sprints in hypoxia (RSH; inspired oxygen fraction [FIO2] = 14.3%) or repeated sprints in normoxia (RSN; FIO2 = 21.0%) on physical performance in 16 highly trained, under-18 male footballers. For both RSH (n = 8) and RSN (n = 8) groups, lower-limb explosive power, sprinting (10–40 m) times, maximal aerobic speed, repeated-sprint (10 × 30 m, 30-s rest) and repeated-agility (RA) (6 × 20 m, 30-s rest) abilities were evaluated in normoxia before and after supervised training. Lower-limb explosive power (+6.5 ± 1.9% vs. +5.0 ± 7.6% for RSH and RSN, respectively; both p < 0.001) and performance during maximal sprinting increased (from −6.6 ± 2.2% vs. −4.3 ± 2.6% at 10 m to −1.7 ± 1.7% vs. −1.3 ± 2.3% at 40 m for RSH and RSN, respectively; p values ranging from <0.05 to <0.01) to a similar extent in RSH and RSN. Both groups improved best (−3.0 ± 1.7% vs. −2.3 ± 1.8%; both p ⩽ 0.05) and mean (−3.2 ± 1.7%, p < 0.01 vs. −1.9 ± 2.6%, p ⩽ 0.05 for RSH and RSN, respectively) repeated-sprint times, whereas sprint decrement did not change. Significant interactions effects (p ⩽ 0.05) between condition and time were found for RA ability–related parameters with very likely greater gains (p ⩽ 0.05) for RSH than RSN (initial sprint: 4.4 ± 1.9% vs. 2.0 ± 1.7% and cumulated times: 4.3 ± 0.6% vs. 2.4 ± 1.7%). Maximal aerobic speed remained unchanged throughout the protocol. In youth highly trained football players, the addition of 10 repeated-sprint training sessions performed in hypoxia vs. normoxia to their regular football practice over a 5-week in-season period was more efficient at enhancing RA ability (including direction changes), whereas it had no additional effect on improvements in lower-limb explosive power, maximal sprinting, and RSA performance.


PLOS ONE | 2014

Comparison of ''Live High-Train Low'' in Normobaric versus Hypobaric Hypoxia

Jonas J. Saugy; Laurent Schmitt; Roberto Cejuela; Raphael Faiss; Anna Hauser; Jon Peter Wehrlin; Benjamin Rudaz; Audric Delessert; Neil Robinson; Grégoire P. Millet

We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current “real” practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained at 1100–1200 m and resided at an altitude of 2250 m (PiO2  = 121.7±1.2 vs. 121.4±0.9 mmHg) under either NH (hypoxic chamber; FiO2 15.8±0.8%) or HH (real altitude; barometric pressure 580±23 mmHg) conditions. Oxygen saturations (SpO2) were recorded continuously daily overnight. PiO2 and training loads were matched daily. Before (Pre-) and 1 day after (Post-) LHTL, blood samples, VO2max, and total haemoglobin mass (Hbmass) were measured. A 3-km running test was performed near sea level twice before, and 1, 7, and 21 days following LHTL. During LHTL, hypoxic exposure was lower for the NH group than for the HH group (220 vs. 300 h; P<0.001). Night SpO2 was higher (92.1±0.3 vs. 90.9±0.3%, P<0.001), and breathing frequency was lower in the NH group compared with the HH group (13.9±2.1 vs. 15.5±1.5 breath.min−1, P<0.05). Immediately following LHTL, similar increases in VO2max (6.1±6.8 vs. 5.2±4.8%) and Hbmass (2.6±1.9 vs. 3.4±2.1%) were observed in NH and HH groups, respectively, while 3-km performance was not improved. However, 21 days following the LHTL intervention, 3-km run time was significantly faster in the HH (3.3±3.6%; P<0.05) versus the NH (1.2±2.9%; ns) group. In conclusion, the greater degree of race performance enhancement by day 21 after an 18-d LHTL camp in the HH group was likely induced by a larger hypoxic dose. However, one cannot rule out other factors including differences in sleeping desaturations and breathing patterns, thus suggesting higher hypoxic stimuli in the HH group.


Medicine and Science in Sports and Exercise | 2015

Repeated Double-Poling Sprint Training in Hypoxia by Competitive Cross-country Skiers

Raphael Faiss; Sarah J. Willis; Dennis-Peter Born; Billy Sperlich; Jean-Marc Vesin; Hans-Christer Holmberg; Grégoire P. Millet

PURPOSE Repeated-sprint training in hypoxia (RSH) was recently shown to improve repeated-sprint ability (RSA) in cycling. This phenomenon is likely to reflect fiber type-dependent, compensatory vasodilation, and therefore, our hypothesis was that RSH is even more beneficial for activities involving upper body muscles, such as double poling during cross-country skiing. METHODS In a double-blinded fashion, 17 competitive cross-country skiers performed six sessions of repeated sprints (each consisting of four sets of five 10-s sprints, with 20-s intervals of recovery) either in normoxia (RSN, 300 m; FiO2, 20.9%; n = 8) or normobaric hypoxia (RSH, 3000 m; FiO2, 13.8 %; n = 9). Before (pre) and after (post) training, performance was evaluated with an RSA test (10-s all-out sprints-20-s recovery, until peak power output declined by 30%) and a simulated team sprint (team sprint, 3 × 3-min all-out with 3-min rest) on a double-poling ergometer. Triceps brachii oxygenation was measured by near-infrared spectroscopy. RESULTS From pretraining to posttraining, peak power output in the RSA was increased (P < 0.01) to the same extent (29% ± 13% vs 26% ± 18%, nonsignificant) in RSH and in RSN whereas the number of sprints performed was enhanced in RSH (10.9 ± 5.2 vs 17.1 ± 6.8, P < 0.01) but not in RSN (11.6 ± 5.3 vs 11.7 ± 4.3, nonsignificant). In addition, the amplitude in total hemoglobin variations during sprints throughout RSA rose more in RSH (P < 0.01). Similarly, the average power output during all team sprints improved by 11% ± 9% in RSH and 15% ± 7% in RSN. CONCLUSIONS Our findings reveal greater improvement in the performance of repeated double-poling sprints, together with larger variations in the perfusion of upper body muscles in RSH compared with those in RSN.


Medicine and Science in Sports and Exercise | 2016

Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes.

Anna Hauser; Laurent Schmitt; Severin Troesch; Jonas J. Saugy; Roberto Cejuela-Anta; Raphael Faiss; Neil Robinson; Jon Peter Wehrlin; Grégoire P. Millet

PURPOSE To compare hemoglobin mass (Hb(mass)) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). METHODS Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hb(mass) was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post. RESULTS Hb(mass) increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hb(mass) responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). CONCLUSION HH and NH evoked similar Hb(mass) increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hb(mass) responses in HH and NH emphasizes the importance of individual Hb(mass) evaluation of altitude training.


Sports Medicine | 2012

Hypoxic conditions and exercise-to-rest ratio are likely paramount.

Grégoire P. Millet; Raphael Faiss

We read with great interest the recent review of our colleagues, Francois Billaut et al., on the highly debated topic of ‘altitude training in team sports’. While we acknowledge the authors for their excellent comprehensive review of the scarce literature that confirms, to a large extent, some of our previous views, we wish to comment on two points of importance (i) the relative differences between hypobaric (HH) and normobaric (NH) hypoxia; and (ii) the difference between intermittent hypoxic training (IHT) and repeated sprints (RS). We believe that these two points are paramount for understanding the potential benefits of hypoxic training on RS and, more generally, on team-sport athlete performance and, therefore, that further investigation of these points should also be recommended prior to any evidence-based recommendations being made.


Journal of Applied Physiology | 2012

Last Word on Point: Counterpoint: Hypobaric hypoxia induces different responses from normobaric hypoxia

Grégoire P. Millet; Raphael Faiss; Vincent Pialoux

to the editor: We thank the authors of the comments (see Ref. [1][1]) who contributed their thoughts to this debate ([3][2], [5][3]). Many additional interesting arguments were provided, and most of the comments are in line with our view that hypobaric hypoxia induces different physiological

Collaboration


Dive into the Raphael Faiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Hauser

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jon Peter Wehrlin

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Vesin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge