Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphael H. Valdivia is active.

Publication


Featured researches published by Raphael H. Valdivia.


Gene | 1996

FACS-optimized mutants of the green fluorescent protein (GFP)

Brendan P. Cormack; Raphael H. Valdivia; Stanley Falkow

We have constructed a library in Escherichia coli of mutant gfp genes (encoding green fluorescent protein, GFP) expressed from a tightly regulated inducible promoter. We introduced random amino acid (aa) substitutions in the twenty aa flanking the chromophore Ser-Tyr-Gly sequence at aa 65-67. We then used fluorescence-activated cell sorting (FACS) to select variants of GFP that fluoresce between 20-and 35-fold more intensely than wild type (wt), when excited at 488 nm. Sequence analysis reveals three classes of aa substitutions in GFP. All three classes of mutant proteins have highly shifted excitation maxima. In addition, when produced in E. coli, the folding of the mutant proteins is more efficient than folding of wt GFP. These two properties contribute to a greatly increased (100-fold) fluorescence intensity, making the mutants useful for a number of applications.


Molecular Microbiology | 1998

Macrophage‐dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival

Daniela Maria Cirillo; Raphael H. Valdivia; Denise M. Monack; Stanley Falkow

Salmonella pathogenicity island 2 (SPI‐2) encodes a putative type III secretion system necessary for systemic infection in animals. We have investigated the transcriptional organization and regulation of SPI‐2 by creating gfp fusions throughout the entire gene cluster. These gfp fusions demonstrated that SPI‐2 genes encoding structural, regulatory and previously uncharacterized putative secreted proteins are preferentially expressed in the intracellular environment of the host macrophage. Furthermore, the transcription of these genes within host cells was dependent on the two‐component regulatory system SsrA/SsrB and an acidic phagosomal environment. Most SPI‐2 mutants failed to replicate to the same level as wild‐type strains in murine macrophages and human epithelial cells. In orally infected mice, SPI‐2 mutants colonized the Peyers patches but did not progress to the mesenteric lymph nodes. We conclude that SPI‐2 genes are specifically expressed upon entry into mammalian cells and are required for intracellular growth in host cells in vivo and in vitro.


Molecular Microbiology | 1996

Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction

Raphael H. Valdivia; Stanley Falkow

The ability of Salmonella typhimurium to survive and replicate within murine macrophages is dependent on a low phagosomal pH. This requirement for an acidic vacuole suggests that low pH is an important environmental stimulus for the transcription of genes necessary for intracellular survival. To study the behaviour of acid‐inducible genes in response to the phagosomal environment, we have applied a novel enrichment strategy, termed differential fluorescence induction (DFI), to screen an S. typhimurium library for promoters that are upregulated at pH 4.5. DFI utilizes a fluorescence‐enhanced green fluorescent protein (GFP) and a fluorescence‐activated cell sorter (FACS) to perform genetic selection. In the presence of an inducing stimulus, such as low pH, a FACS is used to sort highly fluorescent bacterial clones bearing random promoters fused to the mutant GFP protein (GFPmut). This population is then amplified at neutral pH and the least fluorescent population is sorted. Sequential sorts for fluorescent and non‐fluorescent bacteria in the presence or absence of inducing conditions rapidly enriches for promoter fusions that are regulated by the inducing stimulus. We have identified eight acid‐inducible promoters and quantified their expression in response to pH 4.5 and to the phagosome milieu. These acid‐inducible promoters exhibited extensive homology to promoter regions of genes encoding for cell‐surface‐maintenance enzymes, stress proteins, and generalized efflux pumps. Only a subset of these promoters was induced in macrophages with kinetics and levels of expression that do not necessarily correlate with in vitro pH‐shock induction. This suggests that while low pH is a relevant inducer of intracellular gene expression, additional stimuli in the macrophage can modulate the expression of acid‐inducible genes.


Gene | 1996

Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions.

Raphael H. Valdivia; Alexander E. Hromockyj; Denise M. Monack; Lalita Ramakrishnan; Stanley Falkow

The green fluorescent protein (GFP) from Aequorea victoria is a novel fluorescent marker that has potential use in the study of bacterial pathogenicity. To explore some of the potential applications of GFP to the study of host-parasite interactions, we constructed two GFP expression vectors suitable for different facultative intracellular bacterial pathogens. The first expression vector was tested in the enteric pathogens, Salmonella typhimurium and Yersinia pseudotuberculosis, and the second vector tested in Mycobacterium marinum (Mm). Both expression vectors were found to be stable and to direct high levels of GFP synthesis. Standard epifluorescence microscopy was used to detect all three bacterial pathogenic species during the early and late stages of infection of live mammalian cells. Mm expressing gfp was also visualized in infected animal tissues. gfp expression did not adversely affect bacterial survival, nor did it compromise entry into mammalian cells or their survival within macrophages. In addition, all three gfp-expressing bacterial pathogens could be detected and sorted in a flow cytometer, either alone or in association with epithelial cells or macrophages. Therefore, GFP not only provides a convenient tool to image pathogenic bacteria, but allows the quantitative measurement of bacterial association with mammalian cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole

Jordan L. Cocchiaro; Yadunanda Kumar; Elizabeth R. Fischer; Ted Hackstadt; Raphael H. Valdivia

The acquisition of host-derived lipids is essential for the pathogenesis of the obligate intracellular bacteria Chlamydia trachomatis. Current models of chlamydial lipid acquisition center on the fusion of Golgi-derived exocytic vesicles and endosomal multivesicular bodies with the bacteria-containing parasitophorous vacuole (“inclusion”). In this study, we describe a mechanism of lipid acquisition and organelle subversion by C. trachomatis. We show by live cell fluorescence microscopy and electron microscopy that lipid droplets (LDs), neutral lipid storage organelles, are translocated from the host cytoplasm into the inclusion lumen. LDs dock at the surface of the inclusion, penetrate the inclusion membrane and intimately associate with reticulate Bodies, the replicative form of Chlamydia. The inclusion membrane protein IncA, but not other inclusion membrane proteins, cofractionated with LDs and accumulated in the inclusion lumen. Therefore, we postulate that the translocation of LDs may occur at IncA-enriched subdomains of the inclusion membrane. Finally, the chlamydial protein Lda3 may participate in the cooption of these organelles by linking cytoplasmic LDs to inclusion membranes and promoting the removal of the LD protective coat protein, adipocyte differentiation related protein (ADRP). The wholesale transport of LDs into the lumen of a parasitophorous vacuole represents a unique mechanism of organelle sequestration and subversion by a bacterial pathogen.


Developmental Cell | 2002

The Yeast Clathrin Adaptor Protein Complex 1 Is Required for the Efficient Retention of a Subset of Late Golgi Membrane Proteins

Raphael H. Valdivia; Daniel M. Baggott; John S. Chuang; Randy Schekman

In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and early endosomes. Traffic of Chs3p from the TGN/early endosome to the cell surface requires CHS5 and CHS6, mutant alleles of which trap Chs3p in the TGN/early endosome. Disruption of the clathrin adaptor protein complex 1 (AP-1) restores Chs3p transport to the plasma membrane. Similarly, in AP-1 deficient cells, the resident TGN/early endosome syntaxin, Tlg1p, is missorted. We propose that clathrin and AP-1 act to recycle Chs3p and Tlg1p from the early endosome to the TGN.


Current Biology | 2006

The Obligate Intracellular Pathogen Chlamydia trachomatis Targets Host Lipid Droplets

Yadunanda Kumar; Jordan L. Cocchiaro; Raphael H. Valdivia

Lipid droplets (LDs) are ubiquitous but poorly understood neutral-lipid-rich eukaryotic organelles that may participate in functions as diverse as lipid homeostasis, membrane traffic, and signaling . We report that infection with the obligate intracellular pathogen Chlamydia trachomatis, the causative agent of trachoma and many sexually transmitted diseases , leads to the accumulation of neutral-lipid-rich structures with features of LDs at the cytoplasmic surface of the bacteria-containing vacuole. To identify bacterial factors that target these organelles, we screened a collection of yeast strains expressing GFP-tagged chlamydial ORFs and identified several proteins with tropism for eukaryotic LDs. We determined that three of these LD-associated (Lda) proteins are translocated into the mammalian host and associate with neutral-lipid-rich structures. Furthermore, the stability of one Lda protein is dependent on binding to LDs, and pharmacological inhibition of LD formation negatively impacted chlamydial replication. These results suggest that C. trachomatis targets LDs to enhance its survival and replication in infected cells. The co-option of mammalian LD function by a pathogenic bacterium represents a novel mechanism of eukaryotic organelle subversion and provides unique research opportunities to explore the function of these understudied organelles.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane.

Raphael H. Valdivia; Randy Schekman

During cell stress, Saccharomyces cerevisiae increases the synthesis of chitin and glucans to strengthen and repair the cell wall. In this study, we show that under conditions of cell stress, the steady-state localization of chitin synthase III (Chs3p) shifts from internal stores (chitosomes) to the plasma membrane (PM). This redistribution occurs rapidly and requires the activators of the cell wall stress response signaling pathway, the G protein Rho1p, and the protein kinase Pkc1p, but not the cell integrity response mitogen-activated protein kinase cascade. Furthermore, expression of activated forms of Rho1p or Pkc1p, in the absence of cell stress, is sufficient to redistribute Chs3p to the PM. In cells deficient for both the clathrin adaptor complex 1 and Chs6p, where Chs3p is transported to the PM by an alternative bypass pathway, cell wall stress did not cause mobilization of Chs3p, suggesting that Rho1p/Pkc1p regulate Chs3p exit from the trans-Golgi network. The mobilization of an intracellular reservoir of Chs3p presents a novel opportunity to investigate the genetic basis of regulated vesicular traffic.


Annual Review of Cell and Developmental Biology | 2012

Emerging roles for lipid droplets in immunity and host-pathogen interactions.

Hector A. Saka; Raphael H. Valdivia

Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.


Mbio | 2013

STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection

Jeffrey R. Barker; Benjamin J. Koestler; Victoria K. Carpenter; Dara L. Burdette; Christopher M. Waters; Russell E. Vance; Raphael H. Valdivia

ABSTRACT STING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells. IMPORTANCE This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections. This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections.

Collaboration


Dive into the Raphael H. Valdivia's collaboration.

Top Co-Authors

Avatar

Stanley Falkow

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge