Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Bastidas is active.

Publication


Featured researches published by Robert J. Bastidas.


Current Opinion in Microbiology | 2008

Nutritional control via Tor signaling in Saccharomyces cerevisiae.

John R. Rohde; Robert J. Bastidas; Rekha Puria; Maria E. Cardenas

The yeast Saccharomyces cerevisiae senses and responds to nutrients by adapting its growth rate and undergoing morphogenic transitions to ensure survival. The Tor pathway is a major integrator of nutrient-derived signals that in coordination with other signaling pathways orchestrates cell growth. Recent advances have identified novel Tor kinase substrates and established the protein trafficking membranous network and the nucleus as platforms for Tor signaling. These and other recent findings delineate distinct signaling branches emanating from membrane-associated Tor complexes to control cell growth.


PLOS Pathogens | 2009

The Protein Kinase Tor1 Regulates Adhesin Gene Expression in Candida albicans

Robert J. Bastidas; Joseph Heitman; Maria E. Cardenas

Eukaryotic cell growth is coordinated in response to nutrient availability, growth factors, and environmental stimuli, enabling cell–cell interactions that promote survival. The rapamycin-sensitive Tor1 protein kinase, which is conserved from yeasts to humans, participates in a signaling pathway central to cellular nutrient responses. To gain insight into Tor-mediated processes in human fungal pathogens, we have characterized Tor signaling in Candida albicans. Global transcriptional profiling revealed evolutionarily conserved roles for Tor1 in regulating the expression of genes involved in nitrogen starvation responses and ribosome biogenesis. Interestingly, we found that in C. albicans Tor1 plays a novel role in regulating the expression of several cell wall and hyphal specific genes, including adhesins and their transcriptional repressors Nrg1 and Tup1. In accord with this transcriptional profile, rapamycin induced extensive cellular aggregation in an adhesin-dependent fashion. Moreover, adhesin gene induction and cellular aggregation of rapamycin-treated cells were strongly dependent on the transactivators Bcr1 and Efg1. These findings support models in which Tor1 negatively controls cellular adhesion by governing the activities of Bcr1 and Efg1. Taken together, these results provide evidence that Tor1-mediated cellular adhesion might be broadly conserved among eukaryotic organisms.


Cold Spring Harbor Perspectives in Medicine | 2013

Chlamydial Intracellular Survival Strategies

Robert J. Bastidas; Cherilyn A. Elwell; Joanne N. Engel; Raphael H. Valdivia

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.


Cell Host & Microbe | 2015

Integrating chemical mutagenesis and whole genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia

Marcela Kokes; Joe Dan Dunn; Joshua A. Granek; Bidong D. Nguyen; Jeffrey R. Barker; Raphael H. Valdivia; Robert J. Bastidas

Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.


Journal of Biological Chemistry | 2005

Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae

Andrew M. Seeds; Robert J. Bastidas; John D. York

The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 → I(1,3,4,5)P4 → I(1,2,3,4,5)P5 → PP-IP4 → PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.


Nature | 2014

Antifungal drug resistance evoked via RNAi-dependent epimutations

Silvia Calo; Cecelia Shertz-Wall; Soo Chan Lee; Robert J. Bastidas; Francisco E. Nicolás; Joshua A. Granek; Piotr A. Mieczkowski; Santiago Torres-Martínez; Rosa M. Ruiz-Vázquez; Maria E. Cardenas; Joseph Heitman

Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Trimorphic stepping stones pave the way to fungal virulence

Robert J. Bastidas; Joseph Heitman

The fungal kingdom encompasses ≈1.5 million species (1) as diverse as single-celled yeasts, pathogens of animals/plants, and plant root symbionts. Fungi are eukaryotic, closely aligned with metazoans (2, 3). Animals and fungi diverged ≈1 billion years ago; their last common ancestor was unicellular, motile, and aquatic. Some fungi grow as unicellular yeasts, but most are filamentous multicellular organisms. Importantly, some fungi are dimorphic, growing as both yeast and filamentous forms (i.e., Saccharomyces cerevisiae). Yet others are trimorphic and grow as yeast, hyphae, and pseudohyphae (i.e., Candida albicans). S. cerevisiae pseudohyphal growth long eluded detection—it requires special conditions/strains and was lost during domestication (4). How pseudohyphae are related to yeast and hyphae (as a distinct fate or a continuum) was unknown until the report of Carlisle et al. (5) in this issue of PNAS. They reveal that pseudohyphae are intermediate between yeast and hyphae, with implications for pathogen–host interactions and fungal evolution.


Infection and Immunity | 2015

Coxiella burnetii Effector Proteins That Localize to the Parasitophorous Vacuole Membrane Promote Intracellular Replication

Charles L. Larson; Paul A. Beare; Daniel E. Voth; Dale Howe; Diane C. Cockrell; Robert J. Bastidas; Raphael H. Valdivia; Robert A. Heinzen

ABSTRACT The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.


PLOS Pathogens | 2014

The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling

Yi Shan Chen; Robert J. Bastidas; Hector A. Saka; Victoria K. Carpenter; Kristian L. Richards; Gregory V. Plano; Raphael H. Valdivia

Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.


BMC Genomics | 2010

Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom

Cecelia A. Shertz; Robert J. Bastidas; Wenjun Li; Joseph Heitman; Maria E. Cardenas

BackgroundThe nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki.ResultsInterestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions.ConclusionsThe repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.

Collaboration


Dive into the Robert J. Bastidas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. York

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge