Raquel A. Baños
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel A. Baños.
Physical Review E | 2013
Emanuele Cozzo; Raquel A. Baños; Sandro Meloni; Yamir Moreno
We develop a theoretical framework for the study of epidemiclike social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated with the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is inaccurate.
Journal of Complex Networks | 2013
Javier Borge-Holthoefer; Raquel A. Baños; Sandra González-Bailón; Yamir Moreno
Most human interactions today take place with the mediation of ICTs. This is extending the boundaries of interdependence: the group of reference, ideas, and behaviour to which people are exposed is larger and less restricted to old geographical and cultural boundaries; but it is also providing more and better data with which to build more informative models on the effects of social interactions, amongst them, the way in which contagion and cascades diffuse in social networks. Online data are not only helping us gain deeper insights into the structural complexity of social systems; they are also illuminating the consequences of that complexity, especially around collective and temporal dynamics. This paper offers an overview of the models and applications that have been developed in what is still a nascent area of research, as well as an outline of immediate lines of work that promise to open new vistas in our understanding of cascading behaviour in social networks.
EPJ Data Science | 2013
Raquel A. Baños; Javier Borge-Holthoefer; Yamir Moreno
In a diversified context with multiple social networking sites, heterogeneous activity patterns and different user-user relations, the concept of ‘information cascade’ is all but univocal. Despite the fact that such information cascades can be defined in different ways, it is important to check whether some of the observed patterns are common to diverse contagion processes that take place on modern social media. Here, we explore one type of information cascades, namely, those that are time-constrained, related to two kinds of socially-rooted topics on Twitter. Specifically, we show that in both cases cascades sizes distribute following a fat-tailed distribution and that whether or not a cascade reaches system-wide proportions is mainly given by the presence of so-called hidden influentials. These latter nodes are not the hubs, which on the contrary, often act as firewalls for information spreading. Our results contribute to a better understanding of the dynamics of complex contagion and, from a practical side, for the identification of efficient spreaders in viral phenomena.
Physical Review X | 2016
James P. Gleeson; Kevin P. O’Sullivan; Raquel A. Baños; Yamir Moreno
Online social media has greatly affected the way in which we communicate with each other. However, little is known about what fundamental mechanisms drive dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and that can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-dependent) heavy-tailed distributions of meme popularity. The presented framework constitutes a null model for social spreading phenomena that, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.
Physical Review B | 2013
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L = 40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, ν = 2.562(42) for the thermal exponent, η = −0.3900(36) for the anomalous dimension, and ω = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield α = −5.69(13), β = 0.782(10), and γ = 6.13(11). We also compute several universal quantities at Tc.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; D. Iñiguez; A. Maiorano; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; Antonio Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; P. Tellez; R. Tripiccione; D. Yllanes
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
European Physical Journal-special Topics | 2012
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; Marcello Pivanti; S. Perez-Gaviro; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; P. Tellez; R. Tripiccione; D. Yllanes
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Computer Physics Communications | 2014
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures – that can be implemented with available electronics technologies – may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.
Physical Review E | 2014
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.
Journal of Statistical Mechanics: Theory and Experiment | 2014
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; M Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field, using the Janus computer. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would be critical regime is unreachable with present resources, the numerical challenge is finally well posed.