Raquel Tavares
University of Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel Tavares.
Oecologia | 1996
D. Loustau; P. Berbigier; P. Roumagnac; C. Arruda-Pacheco; J.S. David; M. I. Ferreira; J. S. Pereira; Raquel Tavares
The transpiration, sap flow, stomatal conductance and water relations ofPinus pinaster were determined during spring and summer in a 64-year-old stand in Ribatejo (Portugal). The transpiration of the pine canopy was determined from sap flow or eddy covariance techniques. Canopy conductance values (gc) were estimated from inversion methods using eddy covariance or sap flow data, respectively, and from scaling-up methods using stomatal conductance values measured in the field and leaf area index (LAI) values. The transpiration was closely controlled by the stomatal conductance of pines (Ω was 0.05–0.15). For wet soil conditions, the various estimates ofgc showed reasonable agreement.gc peaked in the morning at 0.01 m×s-1, exhibited a midday depression and showed a secondary peak in late afternoon. This behaviour could be predicted simply on the basis of the stomatal sensitivity to air vapour pressure deficit. On a seasonal basis, monthly average values ofgc decreased from 4×10-3 m×s-1 in spring to 1.7×10-3 m·s-1 in late summer. Accordingly, the transpiration peaked at 3 mm×d-1 on wet soil in May. It decreased progressively during the summer drought to 0.8 mm×d-1 at the end of August. The minimal value of needle water potential was maintained at -1.9 MPa but predawn values decreased from -0.6 MPa in May to -0.9 MPa in July. It may have reached lower values in August. The amount of water stored in the trunk accounted for a 12% (10 kg×tree-1×day-1) of the daily transpiration in spring. The storage capacity of the canopy was within the same order of magnitude. The trunk storage increased to 25% (13 kg×tree-1×day-1) of the daily transpiration at the end of summer under drought conditions. The sap flow beneath the crown lagged accordingly behind transpiration with a time constant estimated between 26 min in spring and 40 min at the end of summer.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Gabriel V. Markov; Raquel Tavares; Chantal Dauphin-Villemant; Barbara A. Demeneix; Michael E. Baker; Vincent Laudet
Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.
Plant Physiology | 2012
Claire Parage; Raquel Tavares; Stéphane Réty; Raymonde Baltenweck-Guyot; Anne Poutaraud; Lauriane Renault; Dimitri Heintz; Raphaël Lugan; Gabriel Marais; Sébastien Aubourg; Philippe Hugueney
Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.
web science | 1998
Gabrielle Tichtinsky; Raquel Tavares; Alain Takvorian; Nicole Schwebel-Dugué; David Twell; Martin Kreis
Genes and cDNAs encoding plant protein kinases highly homologous to the animal GSK-3/shaggy subfamily were isolated from Arabidopsis thaliana, Brassica napus, Petunia hybrida and Nicotiana tabacum using the P. hybrida PSK6 GSK-3/shaggy related cDNA as a probe. All the derived protein sequences contained the characteristic catalytic domain of GSK-3/shaggy protein kinases. Sequence comparisons within the catalytic domain with other plant GSK-3/shaggy like kinases clearly indicate that the novel sequences form an isolated group of genes termed the PSK6 group. All the proteins within this group possess an amino-terminal extension which contains short amino acid motifs highly conserved between species and possibly implicated in mitochondrial targeting. Northern hybridisation experiments and reverse transcriptase PCR analysis demonstrated that these novel cDNAs are predominantly expressed in developing pollen. The three genes isolated from P. hybrida and A. thaliana show the same genomic organisation into 12 introns and 13 exons. Although the size of the introns varies, their positions are conserved between genes and species. The comparison of these gene structures and the analysis of deduced protein sequences belonging to different plants hold important information to understand the function of individual members. They suggest that some of the characterised sequences represent most likely true orthologues whereas others must be paralogues. They also allow us to discuss the evolution of the plant GSK-3/shaggy like gene family with regard to plant speciation.
Nature plants | 2016
Niklaus Zemp; Raquel Tavares; Aline Muyle; Deborah Charlesworth; Gabriel Marais; Alex Widmer
Separate sexes and sex-biased gene expression have repeatedly evolved in animals and plants, but the underlying changes in gene expression remain unknown. Here, we studied a pair of plant species, one in which separate sexes and sex chromosomes evolved recently and one which maintained hermaphrodite flowers resembling the ancestral state, to reconstruct expression changes associated with the evolution of dioecy. We found that sex-biased gene expression has evolved in autosomal and sex-linked genes in the dioecious species. Most expression changes relative to hermaphrodite flowers occurred in females rather than males, with higher and lower expression in females leading to female-biased and male-biased expression, respectively. Expression changes were more common in genes located on the sex chromosomes than the autosomes and led to feminization of the X chromosome and masculinization of the Y chromosome. Our results support a scenario in which sex-biased gene expression evolved during the evolution of dioecy to resolve intralocus sexual conflicts over the allocation of resources.
PLOS Genetics | 2015
Niklaus Zemp; Raquel Tavares; Alex Widmer
Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.
Nature Communications | 2016
Zhenhua Liu; Raquel Tavares; Evan S. Forsythe; François André; Raphaël Lugan; Gabriella Jonasson; Stéphanie Boutet-Mercey; Takayuki Tohge; Mark A. Beilstein; Danièle Werck-Reichhart; Hugues Renault
Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
BMC Evolutionary Biology | 2010
Raquel Tavares; Mathilde Cagnon; Ioan Negrutiu; Dominque Mouchiroud
BackgroundDifferent theories for the origin of the angiosperm hermaphrodite flower make different predictions concerning the overlap between the genes expressed in the male and female cones of gymnosperms and the genes expressed in the hermaphrodite flower of angiosperms. The Mostly Male (MM) theory predicts that, of genes expressed primarily in male versus female gymnosperm cones, an excess of male orthologs will be expressed in flowers, excluding ovules, while Out Of Male (OOM) and Out Of Female (OOF) theories predict no such excess.ResultsIn this paper, we tested these predictions by comparing the transcriptomes of three gymnosperms (Ginkgo biloba, Welwitschia mirabilis and Zamia fisheri) and two angiosperms (Arabidopsis thaliana and Oryza sativa), using EST data. We found that the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms flower is significantly higher than the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms vegetative tissues, which shows that the approach is correct. However, we detected no significant differences between the proportion of gymnosperm orthologous genes expressed in the male cone and in the angiosperms flower and the proportion of gymnosperm orthologous genes expressed in the female cone and in the angiosperms flower.ConclusionsThese results do not support the MM theory prediction of an excess of male gymnosperm genes expressed in the hermaphrodite flower of the angiosperms and seem to support the OOM/OOF theories. However, other explanations can be given for the 1:1 ratio that we found. More abundant and more specific (namely carpel and ovule) expression data should be produced in order to further test these theories.
Journal of Experimental Botany | 2016
Aurélie C. M. Vialette-Guiraud; Amélie Andres-Robin; Pierre Chambrier; Raquel Tavares; Charles P. Scutt
We provide an overview of methods and workflows that can be used to investigate the topologies of Gene Regulatory Networks (GRNs) in the context of plant evolutionary-developmental (evo-devo) biology. Many of the species that occupy key positions in plant phylogeny are poorly adapted as laboratory models and so we focus here on techniques that can be efficiently applied to both model and non-model species of interest to plant evo-devo. We outline methods that can be used to describe gene expression patterns and also to elucidate the transcriptional, post-transcriptional, and epigenetic regulatory mechanisms underlying these patterns, in any plant species with a sequenced genome. We furthermore describe how the technique of Protein Resurrection can be used to confirm inferences on ancestral GRNs and also to provide otherwise-inaccessible points of reference in evolutionary histories by exploiting paralogues generated in gene and whole genome duplication events. Finally, we argue for the better integration of molecular data with information from paleobotanical, paleoecological, and paleogeographical studies to provide the fullest possible picture of the processes that have shaped the evolution of plant development.
Molecular Plant | 2015
Zhenhua Liu; Benoît Boachon; Raphaël Lugan; Raquel Tavares; Mathieu Erhardt; Jérôme Mutterer; Valérie Demais; Stéphanie Pateyron; Véronique Brunaud; Toshiyuki Ohnishi; Ales Pencik; Patrick Achard; Fan Gong; Peter Hedden; Danièle Werck-Reichhart; Hugues Renault
Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction.