Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ras Trokovic is active.

Publication


Featured researches published by Ras Trokovic.


Nature | 2011

Copy number variation and selection during reprogramming to pluripotency

Samer M.I. Hussein; Nizar N. Batada; Sanna Vuoristo; Reagan W. Ching; Reija Autio; Elisa Närvä; Siemon Ng; Michel Sourour; Riikka H. Hämäläinen; Cia Olsson; Karolina Lundin; Milla Mikkola; Ras Trokovic; Michael Peitz; Oliver Brüstle; David P. Bazett-Jones; Kari Alitalo; Riitta Lahesmaa; Andras Nagy; Timo Otonkoski

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Neuron | 2002

FGFR1 Is Required for the Development of the Auditory Sensory Epithelium

Ulla Pirvola; Jukka Ylikoski; Ras Trokovic; Jean M. Hébert; Susan K. McConnell; Juha Partanen

The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.


The EMBO Journal | 2003

FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals.

Ras Trokovic; Nina Trokovic; Sanna Hernesniemi; Ulla Pirvola; Daniela M. Vogt Weisenhorn; Janet Rossant; Andrew P. McMahon; Wolfgang Wurst; Juha Partanen

Fibroblast growth factors (FGFs) are signaling molecules of the isthmic organizer, which regulates development of the midbrain and cerebellum. Tissue‐specific inactivation of one of the FGF receptor (FGFR) genes, Fgfr1, in the midbrain and rhombomere 1 of the hindbrain of mouse embryos results in deletion of the inferior colliculi in the posterior midbrain and vermis of the cerebellum. Analyses of both midbrain–hindbrain and midbrain‐specific Fgfr1 mutants suggest that after establishment of the isthmic organizer, FGFR1 is needed for continued response to the isthmic signals, and that it has direct functions on both sides of the organizer. In addition, FGFR1 appears to modify cell adhesion properties critical for maintaining a coherent organizing center. This may be achieved by regulating expression of specific cell‐adhesion molecules at the midbrain–hindbrain border.


Stem cell reports | 2016

Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential

Roksana Moraghebi; Cristina Valensisi; Johannes Kettunen; Colin Andrus; Kalyan Pasumarthy; Mahito Nakanishi; Ken Nishimura; Manami Ohtaka; Jere Weltner; Ben Van Handel; Olavi Parkkonen; Juha Sinisalo; Anu Jalanko; R. David Hawkins; Niels-Bjarne Woods; Timo Otonkoski; Ras Trokovic

Summary Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.


Stem cell reports | 2015

Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

Diego Balboa; Jere Weltner; Solja Eurola; Ras Trokovic; Kirmo Wartiovaara; Timo Otonkoski

Summary CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR) destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.


Stem Cells Translational Medicine | 2013

Comparative Analysis of Targeted Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) and Human Embryonic Stem Cells Reveals Variability Associated With Incomplete Transgene Silencing in Retrovirally Derived hiPSC Lines

Sanna Toivonen; Marisa Ojala; Anu Hyysalo; Tanja Ilmarinen; Kristiina Rajala; Mari Pekkanen-Mattila; Riikka Äänismaa; Karolina Lundin; Jaan Palgi; Jere Weltner; Ras Trokovic; Olli Silvennoinen; Heli Skottman; Susanna Narkilahti; Katriina Aalto-Setälä; Timo Otonkoski

Functional hepatocytes, cardiomyocytes, neurons, and retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) could provide a defined and renewable source of human cells relevant for cell replacement therapies, drug discovery, toxicology testing, and disease modeling. In this study, we investigated the differences between the differentiation potentials of three hESC lines, four retrovirally derived hiPSC lines, and one hiPSC line derived with the nonintegrating Sendai virus technology. Four independent protocols were used for hepatocyte, cardiomyocyte, neuronal, and RPE cell differentiation. Overall, cells differentiated from hESCs and hiPSCs showed functional similarities and similar expression of genes characteristic of specific cell types, and differences between individual cell lines were also detected. Reactivation of transgenic OCT4 was detected specifically during RPE differentiation in the retrovirally derived lines, which may have affected the outcome of differentiation with these hiPSCs. One of the hiPSC lines was inferior in all directions, and it failed to produce hepatocytes. Exogenous KLF4 was incompletely silenced in this cell line. No transgene expression was detected in the Sendai virus‐derived hiPSC line. These findings highlight the problems related to transgene expression in retrovirally derived hiPSC lines.


Molecular and Cellular Biology | 2007

Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice

Monica Moza; Luca Mologni; Ras Trokovic; Georgine Faulkner; Juha Partanen; Olli Carpén

ABSTRACT Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo−/− mice. Surprisingly, myo−/− mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo−/− mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent.


Molecular and Cellular Endocrinology | 2010

Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes

Mervi E. Hyvönen; Pauliina Saurus; Anita A. Wasik; Eija Heikkilä; Marika Havana; Ras Trokovic; Moin A. Saleem; Harry Holthöfer; Sanna Lehtonen

Podocyte injury plays an important role in the development of diabetic nephropathy. Podocytes are insulin-responsive and can develop insulin resistance, but the mechanisms are unknown. To study the role of CD2-associated protein (CD2AP) in podocyte injury, we performed a yeast two-hybrid screening on a glomerular library, and found that CD2AP bound to SH2-domain-containing inositol polyphosphate 5-phosphatase 2 (SHIP2), a negative regulator of insulin signalling. SHIP2 interacts with CD2AP in glomeruli and is expressed in podocytes, where it translocates to plasma membrane after insulin stimulation. Overexpression of SHIP2 in cultured podocytes reduces Akt activation in response to insulin, and promotes apoptosis. SHIP2 is upregulated in glomeruli of insulin resistant obese Zucker rats. These results indicate that SHIP2 downregulates insulin signalling in podocytes. The upregulation of SHIP2 in Zucker rat glomeruli prior to the age of onset of proteinuria suggests a possible role for SHIP2 in the development of podocyte injury.


Experimental Cell Research | 2013

Activin A and Wnt-dependent specification of human definitive endoderm cells

Sanna Toivonen; Karolina Lundin; Diego Balboa; Jarkko Ustinov; Kaisa Tamminen; Jaan Palgi; Ras Trokovic; Timo Tuuri; Timo Otonkoski

Activin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages. When prolonging the DE-induction protocol from 3 to 5 or 7 days, almost pure DE-marker positive cell populations were obtained. However, these cells had an impaired pancreatic differentiation capacity, while they still developed into hepatocyte-like cells. Further propagation of the DE-cells in the presence of Wnt3a and Activin A led to the complete loss of differentiation capacity into hepatic or pancreatic lineages. When Wnt3a was removed after 24h from the initiation of the differentiation, the cells were able to differentiate into PDX1+/NKX6.1+ pancreatic progenitors even with longer DE induction time while efficiency of hepatic differentiation was lower. Our results suggest that both the length and the timing of Wnt3a treatment during DE induction are crucial for the final differentiation outcome. Although it is possible to derive apparently pure DE cells with prolonged Activin A/Wnt-stimulation, their progenitor capacity is restricted to a limited time window.


Stem Cells and Development | 2013

Small Molecule Inhibitors Promote Efficient Generation of Induced Pluripotent Stem Cells From Human Skeletal Myoblasts

Ras Trokovic; Jere Weltner; Tuula Manninen; Milla Mikkola; Karolina Lundin; Riikka H. Hämäläinen; Anu Suomalainen; Timo Otonkoski

Human somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of key transcription factors. iPSCs have been generated from a variety of cell types. However, iPSC induction from human myoblasts has not yet been reported. Human primary skeletal myoblasts can be cultured from diagnostic muscle biopsy specimens, and thousands of lines are frozen and stored in biobanks, and are a valuable source for iPSC-based etiological and pathogenic studies. Our aim was to generate iPSCs from human skeletal myoblasts enriched from muscle biopsy samples. We used retro- or Sendai virus vector-mediated reprogramming of enriched human myoblasts from 7 donors. We show that stable iPSC lines can be generated from human myoblasts at efficiency similar to that of fibroblasts when appropriate media is used, and the efficiency of the feeder-free iPSC generation can be significantly improved by inhibitors of histone deacetylase (sodium butyrate) and TGF-β signaling (SB431542).

Collaboration


Dive into the Ras Trokovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge