Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Otonkoski is active.

Publication


Featured researches published by Timo Otonkoski.


Nature Biotechnology | 2007

Characterization of human embryonic stem cell lines by the International Stem Cell Initiative

Oluseun Adewumi; Behrouz Aflatoonian; Lars Ährlund-Richter; Michal Amit; Peter W. Andrews; Gemma Beighton; Paul Bello; Nissim Benvenisty; Lorraine S. Berry; Simon Bevan; Barak Blum; Justin Brooking; Kevin G. Chen; Andre Choo; Gary A. Churchill; Marie Corbel; Ivan Damjanov; John S Draper; Petr Dvorak; Katarina Emanuelsson; Roland A. Fleck; Angela Ford; Karin Gertow; Marina Gertsenstein; Paul J. Gokhale; Rebecca S. Hamilton; Alex Hampl; Lyn Healy; Outi Hovatta; Johan Hyllner

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Nature | 2011

Copy number variation and selection during reprogramming to pluripotency

Samer M.I. Hussein; Nizar N. Batada; Sanna Vuoristo; Reagan W. Ching; Reija Autio; Elisa Närvä; Siemon Ng; Michel Sourour; Riikka H. Hämäläinen; Cia Olsson; Karolina Lundin; Milla Mikkola; Ras Trokovic; Michael Peitz; Oliver Brüstle; David P. Bazett-Jones; Kari Alitalo; Riitta Lahesmaa; Andras Nagy; Timo Otonkoski

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Journal of Clinical Investigation | 1993

Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells.

Timo Otonkoski; Gillian M. Beattie; Martin I. Mally; Camillo Ricordi; Alberto Hayek

The effects of nicotinamide (NIC) on human fetal and adult endocrine pancreatic cells were studied in tissue culture. Treatment of the fetal cells with 10 mM NIC resulted in a twofold increase in DNA content and a threefold increase in insulin content. This was associated with the development of beta cell outgrowths from undifferentiated epithelial cell clusters and an increase in the expression of the insulin, glucagon, and somatostatin genes. DNA synthesis was stimulated only in the undifferentiated cells. Half-maximal doses for the insulinotropic and mitogenic effects of NIC were 5-10 and 1-2 mM, respectively. Islet-like cell clusters cultured with NIC responded to glucose stimulation with a biphasic increase in insulin release (fourfold peak), whereas control cells were unresponsive to glucose. Both control and NIC-treated cells developed into functional islet tissue after transplantation into athymic nude mice. As compared with adult islets, the insulinotropic action of NIC could only be demonstrated in the fetal cells. Our results indicate that NIC induces differentiation and maturation of human fetal pancreatic islet cells. This model should be useful for the study of molecular mechanisms involved in beta cell development.


Diabetologia | 2004

Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells

Petri Ylipaasto; K. Klingel; A. M. Lindberg; Timo Otonkoski; R. Kandolf; Tapani Hovi; Merja Roivainen

Aims/hypothesisIt is thought that enterovirus infections cause beta-cell damage and contribute to the development of Type 1 diabetes by replicating in the pancreatic islets. We sought evidence for this through autopsy studies and by investigating known enterovirus receptors in cultured human islets.MethodsAutopsy pancreases from 12 newborn infants who died of fulminant coxsackievirus infections and from 65 Type 1 diabetic patients were studied for presence of enteroviral ribonucleic acid by in situ hybridisation. Forty non-diabetic control pancreases were included in the study. The expression and role of receptor candidates in cultured human islets were investigated with receptor-specific antibodies using immunocytochemistry and functional assays.ResultsEnterovirus-positive islet cells were found in some of both autopsy specimen collections, but not in control pancreases. No infected cells were seen in exocrine tissue. The cell surface molecules, poliovirus receptor and integrin αvβ3, which act as enterovirus receptors in established cell lines, were expressed in beta cells. Antibodies to poliovirus receptor, human coxsackievirus and adenovirus receptor and integrin αvβ3 protected islets and beta cells from adverse effects of poliovirus, coxsackie B viruses, and several of the arginine-glycine-aspartic acid motifs containing enteroviruses and human parechovirus 1 respectively. No evidence was found for expression of the decay-accelerating factor which acts as a receptor for several islet-cell-replicating echoviruses in established cell lines.Conclusions/interpretationThe results show a definite islet-cell tropism of enteroviruses in the human pancreas. Some enteroviruses seem to use previously identified cell surface molecules as receptors in beta cells, whereas the identity of receptors used by other enteroviruses remains unknown.


Nature Biotechnology | 2010

High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity

Elisa Närvä; Reija Autio; Nelly Rahkonen; Lingjia Kong; Neil J. Harrison; Danny Kitsberg; Lodovica Borghese; Joseph Itskovitz-Eldor; Omid Rasool; Petr Dvorak; Outi Hovatta; Timo Otonkoski; Timo Tuuri; Wei Cui; Oliver Brüstle; Duncan Baker; Edna Maltby; Harry Moore; Nissim Benvenisty; Peter W. Andrews; Olli Yli-Harja; Riitta Lahesmaa

Prolonged culture of human embryonic stem cells (hESCs) can lead to adaptation and the acquisition of chromosomal abnormalities, underscoring the need for rigorous genetic analysis of these cells. Here we report the highest-resolution study of hESCs to date using an Affymetrix SNP 6.0 array containing 906,600 probes for single nucleotide polymorphisms (SNPs) and 946,000 probes for copy number variations (CNVs). Analysis of 17 different hESC lines maintained in different laboratories identified 843 CNVs of 50 kb–3 Mb in size. We identified, on average, 24% of the loss of heterozygosity (LOH) sites and 66% of the CNVs changed in culture between early and late passages of the same lines. Thirty percent of the genes detected within CNV sites had altered expression compared to samples with normal copy number states, of which >44% were functionally linked to cancer. Furthermore, LOH of the q arm of chromosome 16, which has not been observed previously in hESCs, was detected.


The New England Journal of Medicine | 2012

GAD65 Antigen Therapy in Recently Diagnosed Type 1 Diabetes Mellitus

Johnny Ludvigsson; David Krisky; Rosaura Casas; Tadej Battelino; Luis Castaño; James Greening; Olga Kordonouri; Timo Otonkoski; Paolo Pozzilli; Jean-Jacques Robert; Henk Veeze; Jerry P. Palmer; Diamyd Medical

BACKGROUND The 65-kD isoform of glutamic acid decarboxylase (GAD65) is a major autoantigen in type 1 diabetes. We hypothesized that alum-formulated GAD65 (GAD-alum) can preserve beta-cell function in patients with recent-onset type 1 diabetes. METHODS We studied 334 patients, 10 to 20 years of age, with type 1 diabetes, fasting C-peptide levels of more than 0.3 ng per milliliter (0.1 nmol per liter), and detectable serum GAD65 autoantibodies. Within 3 months after diagnosis, patients were randomly assigned to receive one of three study treatments: four doses of GAD-alum, two doses of GAD-alum followed by two doses of placebo, or four doses of placebo. The primary outcome was the change in the stimulated serum C-peptide level (after a mixed-meal tolerance test) between the baseline visit and the 15-month visit. Secondary outcomes included the glycated hemoglobin level, mean daily insulin dose, rate of hypoglycemia, and fasting and maximum stimulated C-peptide levels. RESULTS The stimulated C-peptide level declined to a similar degree in all study groups, and the primary outcome at 15 months did not differ significantly between the combined active-drug groups and the placebo group (P=0.10). The use of GAD-alum as compared with placebo did not affect the insulin dose, glycated hemoglobin level, or hypoglycemia rate. Adverse events were infrequent and mild in the three groups, with no significant differences. CONCLUSIONS Treatment with GAD-alum did not significantly reduce the loss of stimulated C peptide or improve clinical outcomes over a 15-month period. (Funded by Diamyd Medical and the Swedish Child Diabetes Foundation; ClinicalTrials.gov number, NCT00723411.).


Journal of Clinical Investigation | 2000

Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1

Hanna Huopio; Frank Reimann; Rebecca Ashfield; Jorma Komulainen; Hanna-Liisa Lenko; Jaques Rahier; Ilkka Vauhkonen; Juha Kere; Markku Laakso; Frances M. Ashcroft; Timo Otonkoski

ATP-sensitive potassium channels play a major role in linking metabolic signals to the exocytosis of insulin in the pancreatic beta cell. These channels consist of two types of protein subunit: the sulfonylurea receptor SUR1 and the inward rectifying potassium channel Kir6.2. Mutations in the genes encoding these proteins are the most common cause of congenital hyperinsulinism (CHI). Since 1973, we have followed up 38 pediatric CHI patients in Finland. We reported previously that a loss-of-function mutation in SUR1 (V187D) is responsible for CHI of the most severe cases. We have now identified a missense mutation, E1506K, within the second nucleotide binding fold of SUR1, found heterozygous in seven related patients with CHI and in their mothers. All patients have a mild form of CHI that usually can be managed by long-term diazoxide treatment. This clinical finding is in agreement with the results of heterologous coexpression studies of recombinant Kir6.2 and SUR1 carrying the E1506K mutation. Mutant K(ATP) channels were insensitive to metabolic inhibition, but a partial response to diazoxide was retained. Five of the six mothers, two of whom suffered from hypoglycemia in infancy, have developed gestational or permanent diabetes. Linkage and haplotype analysis supported a dominant pattern of inheritance in a large pedigree. In conclusion, we describe the first dominantly inherited SUR1 mutation that causes CHI in early life and predisposes to later insulin deficiency.


American Journal of Human Genetics | 2005

Over- and Underdosage of SOX3 Is Associated with Infundibular Hypoplasia and Hypopituitarism

Kathryn S. Woods; Maria Cundall; J.P.G. Turton; Karine Rizotti; Ameeta Mehta; Rodger Palmer; Jacqueline Wong; Wui K. Chong; M. Al-Zyoud; Maryam El-Ali; Timo Otonkoski; Juan Pedro Martinez-Barbera; Paul Q. Thomas; Iain C. A. F. Robinson; Robin Lovell-Badge; Karen Woodward; Mehul T. Dattani

Duplications of Xq26-27 have been implicated in the etiology of X-linked hypopituitarism associated with mental retardation (MR). Additionally, an expansion of a polyalanine tract (by 11 alanines) within the transcription factor SOX3 (Xq27.1) has been reported in patients with growth hormone deficiency and variable learning difficulties. We report a submicroscopic duplication of Xq27.1, the smallest reported to date (685.6 kb), in two siblings with variable hypopituitarism, callosal abnormalities, anterior pituitary hypoplasia (APH), an ectopic posterior pituitary (EPP), and an absent infundibulum. This duplication contains SOX3 and sequences corresponding to two transcripts of unknown function; only Sox3 is expressed in the infundibulum in mice. Next, we identified a novel seven-alanine expansion within a polyalanine tract in SOX3 in a family with panhypopituitarism in three male siblings with an absent infundibulum, severe APH, and EPP. This mutation led to reduced transcriptional activity, with impaired nuclear localization of the mutant protein. We also identified a novel polymorphism (A43T) in SOX3 in another child with hypopituitarism. In contrast to findings in previous studies, there was no evidence of MR or learning difficulties in our patients. We conclude that both over- and underdosage of SOX3 are associated with similar phenotypes, consisting of infundibular hypoplasia and hypopituitarism but not necessarily MR.


Journal of Immunology | 2010

IL-17 Immunity in Human Type 1 Diabetes

Jarno Honkanen; Janne K. Nieminen; Ru Gao; Kristiina Luopajärvi; Harri M. Salo; Jorma Ilonen; Mikael Knip; Timo Otonkoski; Outi Vaarala

Th17 immunity has been shown to regulate autoimmune diabetes in mice. IL-17 neutralization prevented development of diabetes when given postinitiation of insulitis but not earlier, suggesting interference with the effector phase of the disease. Islet-cell Ag-specific Th17 cells converted into IFN-γ–secreting Th1-like cells and caused diabetes in mice recipients. The role of IL-17 in human type 1 diabetes (T1D) is, however, not established. In this study, we show upregulation of Th17 immunity in peripheral blood T cells from children with T1D. This was characterized by increased IL-17 secretion and expression of IL-17, IL-22, and retinoic acid-related orphan receptor C isoform 2, but also FOXP3 transcripts upon T cell activation in vitro. Also, circulating memory CD4 cells from children with T1D showed the same pattern of IL-17, IL-22 and FOXP3 mRNA upregulation, indicating IL-17 pathway activation in vivo. IL-17–positive T cells appeared to be CD4+ cells expressing TCR-αβ and CCR6, and a subpopulation showed coproduction of IFN-γ. Given the Th17 immunity in T1D, we demonstrated that IL-17 had detrimental effects on human islet cells in vitro; it potentiated both inflammatory and proapoptotic responses. Our findings highlight the role of IL-17 immunity in the pathogenesis of human T1D and point to a potential therapeutic strategy.


Stem Cells | 2007

N‐Glycolylneuraminic Acid Xenoantigen Contamination of Human Embryonic and Mesenchymal Stem Cells Is Substantially Reversible

Annamari Heiskanen; Tero Satomaa; Sari Tiitinen; Anita Laitinen; Sirkka Mannelin; Ulla Impola; Milla Mikkola; Cia Olsson; Halina Miller-Podraza; Maria Blomqvist; Anne Olonen; Hanna Salo; Petri Lehenkari; Timo Tuuri; Timo Otonkoski; Jari Natunen; Juhani Saarinen; Jarmo Laine

Human embryonic and mesenchymal stem cell therapies may offer significant benefit to a large number of patients. Recently, however, human embryonic stem cell lines cultured on mouse feeder cells were reported to be contaminated by the xeno‐carbohydrate N‐glycolylneuraminic acid (Neu5Gc) and considered potentially unfit for human therapy. To determine the extent of the problem of Neu5Gc contamination for the development of stem cell therapies, we investigated whether it also occurs in cells cultured on human feeder cells and in mesenchymal stem cells, what are the sources of contamination, and whether the contamination is reversible. We found that N‐glycolylneuraminic acid was present in embryonic stem cells cultured on human feeder cells, correlating with the presence of Neu5Gc in components of the commercial serum replacement culture medium. Similar contamination occurred in mesenchymal stem cells cultured in the presence of fetal bovine serum. The results suggest that the Neu5Gc is present in both glycoprotein and lipid‐linked glycans, as detected by mass spectrometric analysis and monoclonal antibody staining, respectively. Significantly, the contamination was largely reversible in the progeny of both cell types, suggesting that decontaminated cells may be derived from existing stem cell lines. Although major complications have not been reported in the clinical trials with mesenchymal stem cells exposed to fetal bovine serum, the immunogenic contamination may potentially be reflected in the viability and efficacy of the transplanted cells and thus bias the published results. Definition of safe culture conditions for stem cells is essential for future development of cellular therapies.

Collaboration


Dive into the Timo Otonkoski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaan Palgi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna Huopio

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timo Tuuri

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge