Rasmus Lykke Marvig
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rasmus Lykke Marvig.
Journal of Clinical Microbiology | 2012
Mette Voldby Larsen; Salvatore Cosentino; Simon Rasmussen; Carsten Friis; Henrik Hasman; Rasmus Lykke Marvig; Lars Jelsbak; Thomas Sicheritz-Pontén; David W. Ussery; Frank Møller Aarestrup; Ole Lund
ABSTRACT Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Lei Yang; Lars Jelsbak; Rasmus Lykke Marvig; Søren Damkiær; Christopher T. Workman; Martin Holm Rau; Susse Kirkelund Hansen; Anders Folkesson; Helle Krogh Johansen; Oana Ciofu; Niels Høiby; Morten Otto Alexander Sommer; Søren Molin
Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment. In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations with pleiotropic effects, followed by a period of genetic drift with limited phenotypic change and a genomic signature of negative selection, suggesting that the evolving lineage has reached a major adaptive peak in the fitness landscape. This contrasts with previous findings of continued positive selection from long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.
Nature Genetics | 2015
Rasmus Lykke Marvig; Lea Mette Madsen Sommer; Søren Molin; Helle Krogh Johansen
Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.
PLOS Genetics | 2013
Rasmus Lykke Marvig; Helle Krogh Johansen; Søren Molin; Lars Jelsbak
Genome sequencing of bacterial pathogens has advanced our understanding of their evolution, epidemiology, and response to antibiotic therapy. However, we still have only a limited knowledge of the molecular changes in in vivo evolving bacterial populations in relation to long-term, chronic infections. For example, it remains unclear what genes are mutated to facilitate the establishment of long-term existence in the human host environment, and in which way acquisition of a hypermutator phenotype with enhanced rates of spontaneous mutations influences the evolutionary trajectory of the pathogen. Here we perform a retrospective study of the DK2 clone type of P. aeruginosa isolated from Danish patients suffering from cystic fibrosis (CF), and analyze the genomes of 55 bacterial isolates collected from 21 infected individuals over 38 years. Our phylogenetic analysis of 8,530 mutations in the DK2 genomes shows that the ancestral DK2 clone type spread among CF patients through several independent transmission events. Subsequent to transmission, sub-lineages evolved independently for years in separate hosts, creating a unique possibility to study parallel evolution and identification of genes targeted by mutations to optimize pathogen fitness (pathoadaptive mutations). These genes were related to antibiotic resistance, the cell envelope, or regulatory functions, and we find that the prevalence of pathoadaptive mutations correlates with evolutionary success of co-evolving sub-lineages. The long-term co-existence of both normal and hypermutator populations enabled comparative investigations of the mutation dynamics in homopolymeric sequences in which hypermutators are particularly prone to mutations. We find a positive exponential correlation between the length of the homopolymer and its likelihood to acquire mutations and identify two homopolymer-containing genes preferentially mutated in hypermutators. This homopolymer facilitated differential mutagenesis provides a novel genome-wide perspective on the different evolutionary trajectories of hypermutators, which may help explain their emergence in CF infections.
Mbio | 2014
Trine Markussen; Rasmus Lykke Marvig; María Gómez-Lozano; Kasper Aanaes; Alexandra E. Burleigh; Niels Høiby; Helle Krogh Johansen; S. Molin; Lars Jelsbak
ABSTRACT Microbial population polymorphisms are commonly observed in natural environments, including long-term infected hosts. However, the underlying processes promoting and stabilizing diversity are difficult to unravel and are not well understood. Here, we use chronic infection of cystic fibrosis airways by the opportunistic pathogen Pseudomonas aeruginosa as a system for investigating bacterial diversification processes during the course of infection. We analyze clonal bacterial isolates sampled during a 32-year period and map temporal and spatial variations in population diversity to different infection sites within the infected host. We show that the ancestral infecting strain diverged into distinct sublineages, each with their own functional and genomic signatures and rates of adaptation, immediately after initial colonization. The sublineages coexisted in the host for decades, suggesting rapid evolution of stable population polymorphisms. Critically, the observed generation and maintenance of population diversity was the result of partitioning of the sublineages into physically separated niches in the CF airway. The results reveal a complex within-host population structure not previously realized and provide evidence that the heterogeneity of the highly structured and complex host environment promotes the evolution and long-term stability of pathogen population diversity during infection. IMPORTANCE Within-host pathogen evolution and diversification during the course of chronic infections is of importance in relation to therapeutic intervention strategies, yet our understanding of these processes is limited. Here, we investigate intraclonal population diversity in P. aeruginosa during chronic airway infections in cystic fibrosis patients. We show the evolution of a diverse population structure immediately after initial colonization, with divergence into multiple distinct sublineages that coexisted for decades and occupied distinct niches. Our results suggest that the spatial heterogeneity in CF airways plays a major role in relation to the generation and maintenance of population diversity and emphasize that a single isolate in sputum may not represent the entire pathogen population in the infected individual. A more complete understanding of the evolution of distinct clonal variants and their distribution in different niches could have positive implications for efficient therapy. Within-host pathogen evolution and diversification during the course of chronic infections is of importance in relation to therapeutic intervention strategies, yet our understanding of these processes is limited. Here, we investigate intraclonal population diversity in P. aeruginosa during chronic airway infections in cystic fibrosis patients. We show the evolution of a diverse population structure immediately after initial colonization, with divergence into multiple distinct sublineages that coexisted for decades and occupied distinct niches. Our results suggest that the spatial heterogeneity in CF airways plays a major role in relation to the generation and maintenance of population diversity and emphasize that a single isolate in sputum may not represent the entire pathogen population in the infected individual. A more complete understanding of the evolution of distinct clonal variants and their distribution in different niches could have positive implications for efficient therapy.
Environmental Microbiology | 2012
María Gómez-Lozano; Rasmus Lykke Marvig; Søren Molin; Katherine S. Long
Bacterial small regulatory RNAs (sRNAs) function in post-transcriptional control of gene expression and control a variety of processes including metabolic reactions, stress responses and pathogenesis in response to environmental signals. A variety of approaches have been used previously to identify 44 sRNAs in the opportunistic human pathogen Pseudomonas aeruginosa. In this work, RNA sequencing (RNA-seq) is used to identify novel transcripts in P.aeruginosa involving a combination of three different sequencing libraries. Almost all known sRNAs and over 500 novel intergenic sRNAs are identified with this approach. Although the use of three libraries increased the number of novel transcripts identified, there were significant differences in the subset of transcripts detected in each library, underscoring the importance of library preparation strategy and relative sRNA abundance for successful sRNA detection. Nearly 90% of the novel sRNAs have no orthologous bacterial sequences outside of P.aeruginosa, supporting a limited degree of sequence conservation and rapid evolution of sRNAs at the species level. We anticipate that the data will be useful for the study of regulatory sRNAs in bacteria and that the approach described here may be applied to identify sRNAs in any bacterium under different growth and stress conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sandra Breum Andersen; Rasmus Lykke Marvig; Søren Molin; Helle Krogh Johansen; Ashleigh S. Griffin
Significance Laboratory experiments show that bacteria have surprisingly complex social lives: Like humans, they can cooperate but also cheat each other. Cooperation could benefit bacteria causing infection by coordinating attack and producing toxins in a collective effort. But can cheaters, exploiting the work of others, affect the outcome of infection? We show that populations of bacteria causing chronic lung infections in cystic fibrosis patients contain cheaters that freeload to the point where cooperation no longer pays off by not producing a compound that helps them steal iron from blood. Bad news for bacteria but good for us if we can find ways to meddle in their social lives. Laboratory experiments show that social interactions between bacterial cells can drive evolutionary change at the population level, but significant challenges limit attempts to assess the relevance of these findings to natural populations, where selection pressures are unknown. We have increasingly sophisticated methods for monitoring phenotypic and genotypic dynamics in bacteria causing infectious disease, but in contrast, we lack evidence-based adaptive explanations for those changes. Evolutionary change during infection is often interpreted as host adaptation, but this assumption neglects to consider social dynamics shown to drive evolutionary change in vitro. We provide evidence to show that long-term behavioral dynamics observed in a pathogen are driven by selection to outcompete neighboring conspecific cells through social interactions. We find that Pseudomonas aeruginosa bacteria, causing lung infections in patients with cystic fibrosis, lose cooperative iron acquisition by siderophore production during infection. This loss could be caused by changes in iron availability in the lung, but surprisingly, we find that cells retain the ability to take up siderophores produced by conspecifics, even after they have lost the ability to synthesize siderophores. Only when cooperative producers are lost from the population is the receptor for uptake lost. This finding highlights the potential pitfalls of interpreting loss of function in pathogenic bacterial populations as evidence for trait redundancy in the host environment. More generally, we provide an example of how sequence analysis can be used to generate testable hypotheses about selection driving long-term phenotypic changes of pathogenic bacteria in situ.
Mbio | 2014
Rasmus Lykke Marvig; Søren Damkiær; S. M. H. Khademi; Trine Markussen; S. Molin; Lars Jelsbak
ABSTRACT Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections. Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.
Environmental Microbiology | 2012
Martin Holm Rau; Rasmus Lykke Marvig; Garth D. Ehrlich; Søren Molin; Lars Jelsbak
Adaptation of bacterial pathogens to a permanently host-associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present-day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted a retrospective study of the dissemination of the P.aeruginosa DK2 clone type among patients suffering from cystic fibrosis, sequencing the genomes of 45 isolates collected from 16 individuals over 35 years. Analysis of the genomes provides a high-resolution examination of the dynamics and mechanisms of the change in genetic content during the early stage of host adaptation by this P.aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted in one isolate. Compared with in vitro estimates the resulting average deletion rates are 12- to 36-fold higher. Deletions occur through both illegitimate and homologous recombination, but they are not IS element mediated as previously reported for early stage host adaptation. Uptake of novel DNA sequences during infection is limited as only one prophage region was putatively inserted in one isolate, demonstrating that early host adaptation is characterized by the reduction of genomic repertoire rather than acquisition of novel functions. Finally, we also describe the complete genome of this highly adapted pathogenic strain of P.aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment.
PLOS Genetics | 2014
Sofía Feliziani; Rasmus Lykke Marvig; Adela M. Luján; Alejandro J. Moyano; Julio A. Di Rienzo; Helle Krogh Johansen; Søren Molin; Andrea M. Smania
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections.