Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rasmus P. Clausen is active.

Publication


Featured researches published by Rasmus P. Clausen.


Molecular Pharmacology | 2007

Subunit-specific agonist activity at NR2A, NR2B, NR2C, and NR2D containing N-methyl-D-aspartate glutamate receptors

Kevin Erreger; Matthew T. Geballe; Anders Kristensen; Philip E. Chen; Kasper B. Hansen; C. Justin Lee; Hongjie Yuan; Phuong Thi Quy Le; Polina Lyuboslavsky; Nicola Micale; Lars N. Jorgensen; Rasmus P. Clausen; David J. A. Wyllie; James P. Snyder; Stephen F. Traynelis

The four N-methyl-d-aspartate (NMDA) receptor NR2 subunits (NR2A-D) have different developmental, anatomical, and functional profiles that allow them to serve different roles in normal and neuropathological situations. Identification of subunit-selective NMDA receptor agonists, antagonists, or modulators could prove to be both valuable pharmacological tools as well as potential new therapeutic agents. We evaluated the potency and efficacy of a wide range of glutamate-like compounds at NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D receptors. Twenty-five of 53 compounds examined exhibited agonist activity at the glutamate binding site of NMDA receptors. Concentration-response relationships were determined for these agonists at each NR2 subunit. We find consistently higher potency at the NR2D subunit for a wide range of dissimilar structures, with (2S,4R)-4-methylglutamate (SYM2081) showing the greatest differential potency between NR2A- and NR2D-containing receptors (46-fold). Analysis of chimeric NR2A/D receptors suggests that enhanced agonist potency for NR2D is controlled by residues in both of the domains (Domain1 and Domain2) that compose the bilobed agonist binding domain. Molecular dynamics (MD) simulations comparing a crystallography-based hydrated NR1/NR2A model with a homology-based NR1/NR2D hydrated model of the agonist binding domains suggest that glutamate exhibits a different binding mode in NR2D compared with NR2A that accommodates a 4-methyl substitution in SYM2081. Mutagenesis of functionally divergent residues supports the conclusions drawn based on the modeling studies. Despite high homology and conserved atomic contact residues within the agonist binding pocket of NR2A and NR2D, glutamate adopts a different binding orientation that could be exploited for the development of subunit selective agonists and competitive antagonists.


Journal of Neurochemistry | 2009

Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs

Karsten K. Madsen; Rasmus P. Clausen; Orla M. Larsson; Povl Krogsgaard-Larsen; Arne Schousboe; H. Steve White

Inhibition of the GABA transporter subtype GAT1 by the clinically available anti‐epileptic drug tiagabine has proven to be an effective strategy for the treatment of some patients with partial seizures. In 2005, the investigational drug EF1502 was described as possessing activity at both GAT1 and BGT‐1. When combined with the GAT1 selective inhibitor tiagabine, EF1502 was found to possess a synergistic anti‐convulsant action in the Frings audiogenic seizure‐susceptible mouse model of reflex epilepsy. This effect was subsequently attributed to inhibition of BGT‐1. In this study, the anti‐convulsant effect of the GAT2/3 inhibitor SNAP‐5114 was assessed in the Frings audiogenic seizure‐susceptible mouse alone, and in combination with tiagabine and EF1502. The results showed that SNAP‐5114 produced a synergistic anti‐convulsant effect in combination with EF1502 but not when used in combination with tiagabine. These findings support anatomical evidence that GAT2/3 are most likely located at the synapse in close proximity to GAT1; whereas BGT‐1 is located some distance away from the synapse and GAT1 and GAT2/3. Lastly, EF1502 and tiagabine were evaluated alone, and in combination, in the corneal kindled mouse model of partial epilepsy. The results of this evaluation provide further evidence in support of a role for BGT‐1 in the control of seizure activity. In addition, they suggest that the combined inhibition of GAT1 and BGT‐1 may afford some advantage over inhibiting either transporter alone.


Bioorganic & Medicinal Chemistry | 2011

INHIBITORS OF HISTONE DEMETHYLASES

Brian Lohse; Jesper L. Kristensen; Line H. Kristensen; Karl Agger; Kristian Helin; Michael Gajhede; Rasmus P. Clausen

Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the inhibitors are either previously reported inhibitors of related enzymes or compounds derived from these. Development in terms of selectivity and potency is still pertinent. Several reports on the development of functional assays have been published.


Proceedings of the National Academy of Sciences of the United States of America | 2012

α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

Nathan Absalom; Laura F. Eghorn; Inge S. Villumsen; Nasiara Karim; Tina Bay; J. Olsen; Gitte M. Knudsen; Hans Bräuner-Osborne; Rasmus P. Clausen; Mary Chebib; Petrine Wellendorph

γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABAA receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABAA receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC50 = 140 nM) over α4β(2/3)δ (EC50 = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABAA receptors and postulate a role for extrasynaptic α4δ-containing GABAA receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.


Journal of Pharmacology and Experimental Therapeutics | 2004

First Demonstration of a Functional Role for Central Nervous System Betaine/γ-Aminobutyric Acid Transporter (mGAT2) Based on Synergistic Anticonvulsant Action among Inhibitors of mGAT1 and mGAT2

H. Steve White; William Patrick Watson; Suzanne L. Hansen; Scott Slough; Jens Kristian Perregaard; Alan Sarup; Tina Bolvig; Gitte Petersen; Orla M. Larsson; Rasmus P. Clausen; Erik Falch; Povl Krogsgaard-Larsen; Arne Schousboe

In a recent study, EF1502 [N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo [d]isoxazol-3-ol], which is an N-substituted analog of the GAT1-selective GABA uptake inhibitor exo-THPO (4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), was found to inhibit GABA transport mediated by both GAT1 and GAT2 in human embryonic kidney (HEK) cells expressing the mouse GABA transporters GAT1 to 4 (mGAT1–4). In the present study, EF1502 was found to possess a broad-spectrum anticonvulsant profile in animal models of generalized and partial epilepsy. When EF1502 was tested in combination with the clinically effective GAT1-selective inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid] or LU-32-176B [N-[4,4-bis(4-fluorophenyl)-butyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol], another GAT1-selective N-substituted analog of exo-THPO, a synergistic rather than additive anticonvulsant interaction was observed in the Frings audiogenic seizure-susceptible mouse and the pentylenetetrazol seizure threshold test. In contrast, combination of the two mGAT1-selective inhibitors, tiagabine and LU-32-176B, resulted in only an additive anticonvulsant effect. Importantly, the combination of EF1502 and tiagabine did not result in a greater than additive effect in the rotarod behavioral impairment test. In subsequent in vitro studies conducted in HEK-293 cells expressing the cloned mouse GAT transporters mGAT1 and mGAT2, EF1502 was found to noncompetitively inhibit both mGAT1 and the betaine/GABA transporter mGAT2 (Ki of 4 and 5 μM, respectively). Furthermore, in a GABA release study conducted in neocortical neurons, EF1502 did not act as a substrate for the GABA carrier. Collectively, these findings support a functional role for mGAT2 in the control of neuronal excitability and suggest a possible utility for mGAT2-selective inhibitors in the treatment of epilepsy.


Current Topics in Medicinal Chemistry | 2006

Structure-Activity Relationships of Selective GABA Uptake Inhibitors

Signe Høg; Jeremy R. Greenwood; Karsten B. Madsen; Orla M. Larsson; Arne Schousboe; Povl Krogsgaard-Larsen; Rasmus P. Clausen

For more than four decades there has been a search for selective inhibitors of GABA transporters. This has led to potent and selective inhibitors of the cloned GABA transporter subtype GAT1, which is responsible for a majority of neuronal GABA transport. The only clinically approved compound with this mechanism of action is Tiagabine. Other GABA transporter subtypes have not been targeted with comparable selectivity and potency. We here review a comprehensive series of competitive inhibitors that provide information about the GABA recognition site and summarise the structure-activity relations in a ligand-based pharmacophore model that suggests how future compounds could be designed. Finally, some of the recent results on subtype-characterised competitive inhibitors and recent lipophilic aromatic GABA uptake inhibitors are reviewed.


Molecular Pharmacology | 2013

Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-d-aspartate receptors.

Kasper B. Hansen; Nami Tajima; Rune Risgaard; Riley E. Perszyk; Lars N. Jorgensen; Katie M. Vance; Kevin K. Ogden; Rasmus P. Clausen; Hiro Furukawa; Stephen F. Traynelis

N-methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels assembled from GluN1 and GluN2 subunits. We used a series of N-hydroxypyrazole-5-glycine (NHP5G) partial agonists at the GluN2 glutamate binding site as tools to study activation of GluN1/GluN2A and GluN1/GluN2D NMDA receptor subtypes. Using two-electrode voltage-clamp electrophysiology, fast-application patch-clamp, and single-channel recordings, we show that propyl- and ethyl-substituted NHP5G agonists have a broad range of agonist efficacies relative to the full agonist glutamate (<1–72%). Crystal structures of the agonist binding domains (ABDs) of GluN2A and GluN2D do not reveal any differences in the overall domain conformation induced by binding of the full agonist glutamate or the partial agonist propyl-NHP5G, which is strikingly different from ABD structures of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoate (AMPA) and kainate receptors bound to full and partial agonists. Subsequent evaluation of relative NHP5G agonist efficacy at GluN2A-GluN2D chimeric subunits implicates the amino-terminal domain (ATD) as a strong determinant of agonist efficacy, suggesting that interdomain interactions between the ABD and the ATD may be a central element in controlling the manner by which agonist binding leads to channel opening. We propose that variation in the overall receptor conformation, which is strongly influenced by the nature of interdomain interactions in resting and active states, mediates differences in agonist efficacy and partial agonism at the GluN2 subunits.


Journal of Medicinal Chemistry | 2008

Modified peptides as potent inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction.

Anders Bach; Celestine N. Chi; Thomas B. Olsen; Søren W. Pedersen; Martin U. Røder; Gar F. Pang; Rasmus P. Clausen; Per Jemth; Kristian Strømgaard

The protein-protein interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. An undecapeptide corresponding to the C-terminal of the NMDA was used as a template for finding lead candidates for the inhibition of the PSD-95/NMDA receptor interaction. Initially, truncation and alanine scan studies were carried out, which resulted in a pentapeptide with wild-type affinity, as examined in a fluorescence polarization assay. Further examination was performed by systematic substitutions with natural and unnatural amino acids, which disclosed a tripeptide with micromolar affinity and N-methylated tetrapeptides with improved affinities. Molecular modeling studies guided further N-terminal modifications and introduction of a range of N-terminal substitutions dramatically improved affinity. The best compound, N-cyclohexylethyl-ETAV (56), demonstrated up to 19-fold lower K i value ( K i = 0.94 and 0.45 microM against PDZ1 and PDZ2 of PSD-95, respectively) compared to wild-type values, providing the most potent inhibitors of this interaction reported so far. These novel and potent inhibitors provide an important basis for development of small molecule inhibitors of the PSD-95/NMDA receptor interaction.


Epilepsy Research | 2011

Deletion of the betaine–GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice

Anne-Catherine Lehre; Nicole M. Rowley; Yun Zhou; Silvia Holmseth; Caiying Guo; Torgeir Holen; R. Hua; Petter Laake; A.M. Olofsson; Irais Poblete-Naredo; D.A. Rusakov; Karsten K. Madsen; Rasmus P. Clausen; Arne Schousboe; H.S. White; Niels C. Danbolt

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. Once released, it is removed from the extracellular space by cellular uptake catalyzed by GABA transporter proteins. Four GABA transporters (GAT1, GAT2, GAT3 and BGT1) have been identified. Inhibition of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test, and the i.v. pentylenetetrazol threshold test. We confirm that BGT1 mRNA is present in the brain, but find that the levels are several hundred times lower than those of GAT1 mRNA; possibly explaining the apparent lack of phenotype. In conclusion, the present results do not support a role for BGT1 in the control of seizure susceptibility and cannot provide a mechanistic understanding of the synergism that has been previously reported with tiagabine and EF1502.


Journal of Pharmacology and Experimental Therapeutics | 2011

Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABAA receptor agonist gaboxadol

Karsten K. Madsen; Bjarke Ebert; Rasmus P. Clausen; Povl Krogsgaard-Larsen; Arne Schousboe; H. Steve White

Modulation of the extracellular levels of GABA via inhibition of the synaptic GABA transporter GAT1 by the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid; Gabitril] has proven to be an effective treatment strategy for focal seizures. Even though less is known about the therapeutic potential of other GABA transport inhibitors, previous investigations have demonstrated that N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502), which, like tiagabine, is inactive on GABAA receptors, inhibits both GAT1 and the extrasynaptic GABA and betaine transporter BGT1, and exerts a synergistic anticonvulsant effect when tested in combination with tiagabine. In the present study, the anticonvulsant activity and motor impairment associated with systemic administration of gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), which, at the doses used in this study (i.e., 1–5 mg/kg) selectively activates extrasynaptic α4-containing GABAA receptors, was determined alone and in combination with either tiagabine or EF1502 using Frings audiogenic seizure-susceptible and CF1 mice. EF1502, when administered in combination with gaboxadol, resulted in reduced anticonvulsant efficacy and Rotarod impairment associated with gaboxadol. In contrast, tiagabine, when administered in combination with gaboxadol, did not modify the anticonvulsant action of gaboxadol or reverse its Rotarod impairment. Taken together, these results highlight the mechanistic differences between tiagabine and EF1502 and support a functional role for BGT1 and extrasynaptic GABAA receptors.

Collaboration


Dive into the Rasmus P. Clausen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Schousboe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge